logo

エルミート多項式の生成関数 📂関数

エルミート多項式の生成関数

公式

エルミート多項式生成関数は下記の通りだ。

Φ(x,t)=n=0Hn(x)n!tn=e2xtt2 \Phi (x,t)=\sum \limits _{n=0}^{\infty} \frac{H_{n}(x)}{n!}t^{n}= e^{2xt-t^{2}}

説明

エルミート多項式の生成関数とは、簡単に言えば、エルミート多項式を係数とする多項式のことだ。

Hn(x)H_{n}(x)はエルミート多項式であり、エルミート関数 yn=ex22dndxnex2y_{n}=e^{\frac{x^{2}}{2}}\frac{ \d ^{n} }{ \d x^{n} }e^{-x^{2}}(1)nex22(-1)^{n}e^{\frac{x^{2}}{2}}を掛け合わせて得るか、エルミート微分方程式を解いて得ることができる。

Hn(x)=(1)nex2dndxnex2 H_{n}(x)=(-1)^{n}e^{x^{2}}\frac{ \d ^{n}}{ \d x^{n} }e^{-x^{2}}

導出

f(x)=ex2f(x)=e^{-x^{2}}としよう。すると、

f(n)(x)=dndxnex2=(1)nex2Hn(x)(1) f^{(n)}(x)=\frac{ \d ^{n}}{ \d x^{n} }e^{-x^{2}}=(-1)^{n}e^{-x^{2}}H_{n}(x) \tag{1}

そしてテイラー級数によって、

f(x)=n=0f(n)(a)n!(xa)n f(x)=\sum \limits _{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}

ここで、xa=tx-a=ta=ya=yに置換すると、

f(y+t)=n=0f(n)(y)n!tn f(y+t) = \sum \limits _{n=0}^{\infty} \frac{f^{(n)}(y)}{n!}t^{n}

再び、yyxxとし、ここに(1)(1)を代入すると、

f(x+t)=n=0f(n)(y)n!tn=n=0(1)nex2tnn!Hn(x) f(x+t)=\sum \limits _{n=0}^{\infty} \frac{f^{(n)}(y)}{n!}t^{n}=\sum \limits _{n=0}^{\infty}(-1)^{n}e^{-x^{2}}\frac{t^{n}}{n!}H_{n}(x)

今、ttの代わりにt-tを代入すると、

f(xt)=n=0ex2tnn!Hn(x)=e(xt)2=ex2+2xtt2 \begin{align*} f(x-t) &=\sum \limits _{n=0}^{\infty}e^{-x^{2}}\frac{t^{n}}{n!}H_{n}(x) \\ &= e^{-(x-t)^{2}}=e^{-x^{2}+2xt-t^{2}} \end{align*}

整理すると、

ex2+2xtt2=n=0ex2Hn(x)tnn! e^{-x^{2}+2xt-t^{2}} = \sum \limits _{n=0}^{\infty}e^{-x^{2}}H_{n}(x)\frac{t^{n}}{n!}

今、両辺にex2e^{x^{2}}を掛ければ、求める式を得る。

e2xtt2=n=0Hn(x)tnn! e^{2xt-t^{2}} = \sum \limits _{n=0}^{\infty}H_{n}(x)\frac{t^{n}}{n!}

結論

また、エルミート多項式の生成関数は、下記の微分方程式を満足する。

2Φx22xΦx+2tΦt=0 \frac{ \partial^{2} \Phi}{ \partial x^{2}}-2x\frac{ \partial \Phi}{ \partial x}+2t\frac{ \partial \Phi}{ \partial t }=0

証明

Φ(x,t)=e2xtt2\Phi (x,t)=e^{2xt-t^{2}}を代入すると、

2Φx22xΦx+2tΦt=4t2e2xtt24xte2xtt2+2t(2x2t)e2xtt2=0 \begin{align*} &\frac{ \partial^{2} \Phi}{ \partial x^{2}}-2x\frac{ \partial \Phi}{ \partial x}+2t\frac{ \partial \Phi}{ \partial t } \\ &= 4t^{2}e^{2xt-t^{2}}-4xte^{2xt-t^{2}}+2t(2x-2t)e^{2xt-t^{2}} \\ &=0 \end{align*}