logo

ベッセル関数の再帰関係 📂関数

ベッセル関数の再帰関係

定理

Jν(x)=n=0(1)nΓ(n+1)Γ(n+ν+1)(x2)2n+ν(1) J_{\nu}(x)=\sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma (n+1) \Gamma (n+\nu+1)} \left(\frac{x}{2} \right)^{2n+\nu} \tag{1}

上の関数は、階数ν\nu第一種ベッセル関数と呼ばれる。第一種ベッセル関数Jν(x)J_{\nu}(x)は、下記の方程式を満足する。

ddx[xνJν(x)]=xνJν1(x)ddx[xνJν(x)]=xνJν+1(x)Jν1(x)+Jν+1(x)=2νxJν(x)Jν1(x)Jν+1(x)=2Jν(x)Jν(x)=νxJν(x)+Jν1(x)=νxJν(x)Jν+1(x) \begin{align*} \frac{d}{dx}[x^{\nu} J_{\nu}(x)] &= x^{\nu}J_{\nu-1}(x) \tag{a} \\ \frac{d}{dx}[x^{-\nu}J_{\nu}(x)] &= -x^{-\nu}J_{\nu+1}(x) \tag{b} \\ J_{\nu-1}(x)+J_{\nu+1}(x) &= \frac{2\nu}{x}J_{\nu}(x) \tag{c} \\ J_{\nu-1}(x)-J_{\nu+1}(x) &= 2J^{\prime}_{\nu}(x) \tag{d} \\ J_{\nu}^{\prime}(x) = -\frac{\nu}{x}J_{\nu}(x)+J_{\nu-1}(x) &= \frac{\nu}{x}J_{\nu}(x)-J_{\nu+1}(x) \tag{e} \end{align*}

証明

(a)(a)

(1)(1)xνx^{\nu}を掛けた後、微分すると簡単に得られる。

ddx[xνJν(x)]=ddx[xνn=0(1)nΓ(n+1)Γ(n+ν+1)(x2)2n+ν)=ddxn=0(1)nΓ(n+1)Γ(n+ν+1)x2n+2ν22n+ν=n=0(1)n(2n+2ν)Γ(n+1)Γ(n+ν+1)x2n+2ν122n+ν \begin{align*} \frac{d}{dx}[x^{\nu} J_{\nu}(x)] &= \frac{d}{dx} \left[ x^{\nu} \sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma (n+1) \Gamma (n+\nu+1)} \left(\frac{x}{2} \right)^{2n+\nu} \right) \\ &= \frac{d}{dx} \sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma (n+1) \Gamma (n+\nu+1)} \frac{x^{2n+2\nu}}{2^{2n+\nu}} \\ &= \sum \limits_{n=0}^{\infty} \frac{(-1)^{n}(2n+2\nu)}{\Gamma (n+1) \Gamma (n+\nu+1)} \frac{x^{2n+2\nu-1}}{2^{2n+\nu}} \tag{2} \end{align*}

ガンマ関数は関係式Γ(n+ν+1)=(n+ν)Γ(n+ν)\Gamma (n+\nu+1)=(n+\nu)\Gamma (n+\nu)を満足するため、(2)(2)の分母の2(n+ν)2(n+\nu)を約分すると

ddx[xνJν(x)]=n=0(1)nΓ(n+1)Γ(n+ν)x2n+2ν122n+ν1=xνn=0(1)nΓ(n+1)Γ(n+ν)x2n+ν122n+ν1=xνJν1(x) \begin{align*} \frac{d}{dx}[x^{\nu} J_{\nu}(x)] &= \sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma (n+1) \Gamma (n+\nu)} \frac{x^{2n+2\nu-1}}{2^{2n+\nu-1}} \\ &= x^{\nu}\sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma (n+1) \Gamma (n+\nu)} \frac{x^{2n+\nu-1}}{2^{2n+\nu-1}} \\ &= x^{\nu}J_{\nu-1}(x) \end{align*}

(b)(b)

証明方法の大枠は(a)(a)と同じだが、見落としやすい部分があるため、省略せずに説明する。(1)(1)xνx^{-\nu}を掛けたうえで、(a)(a)のように微分すると

ddx[xνJν(x)]=ddxn=0(1)nΓ(n+1)Γ(n+ν+1)x2n22n+ν=n=0(1)n2nΓ(n+1)Γ(n+ν+1)x2n122n+ν \begin{align*} \frac{d}{dx}[x^{-\nu} J_{\nu}(x)] &= \frac{d}{dx}\sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma (n+1) \Gamma (n+\nu+1)} \frac{x^{2n}}{2^{2n+\nu}} \\ &= \sum \limits_{n=0}^{\infty} \frac{(-1)^{n}2n }{\Gamma (n+1) \Gamma (n+\nu+1)} \frac{x^{2n-1}}{2^{2n+\nu}} \end{align*}

Γ(n+1)=nΓ(n)\Gamma (n+1)=n\Gamma (n)なので、分母の2n2nを約分し、x2\frac{x}{2}の次数を合わせると

ddx[xνJν(x)]=xνn=0(1)nΓ(n)Γ(n+ν+1)x2n+ν122n+ν1 \begin{align*} \frac{d}{dx}[x^{-\nu} J_{\nu}(x)] &= x^{-\nu}\sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma (n) \Gamma (n+\nu+1)} \frac{x^{2n+\nu-1}}{2^{2n+\nu-1}} \end{align*}

ここで、インデックスをn=k+1n=k+1に置き換える。すると

ddx[xνJν(x)]=xνk=1(1)k+1Γ(k+1)Γ(k+ν+2)x2k+ν+122k+ν+1 \begin{align*} \frac{d}{dx}[x^{-\nu} J_{\nu}(x)] &= x^{-\nu}\sum \limits_{k=-1}^{\infty} \frac{(-1)^{k+1} }{\Gamma (k+1) \Gamma (k+\nu+2)} \frac{x^{2k+\nu+1}}{2^{2k+\nu+1}} \end{align*}

k=1k=-1の場合、分母がΓ(k+1)=Γ(0)=\Gamma (k+1)=\Gamma (0)=\inftyに発散するため、00である。従って、インデックスがk=0k=0から始まっても問題ない。

ddx[xνJν(x)]=xνk=0(1)k+1Γ(k+1)Γ(k+ν+2)x2k+ν+122k+ν+1=xνJν+1(x) \begin{align*} \frac{d}{dx}[x^{-\nu} J_{\nu}(x)] &= x^{-\nu}\sum \limits_{k=0}^{\infty} \frac{(-1)^{k+1} }{\Gamma (k+1) \Gamma (k+\nu+2)} \frac{x^{2k+\nu+1}}{2^{2k+\nu+1}} \\ &= -x^{-\nu}J_{\nu+1}(x) \end{align*}

(c)(c), (d)(d)

(a)(a)Jν1(x)J_{\nu-1}(x)について整理し、(b)(b)Jν+1(x)J_{\nu+1}(x)について整理した後、加えて引くと直ちに得られる。

Jν1(x)=xνddx[xνJν(x)]=xννxν1Jν(x)+xνxνJν(x)=νx1Jν(x)+Jν(x)(3) \begin{align*} J_{\nu-1}(x) &= x^{-\nu} \frac{d}{dx}\left[x^{\nu} J_{\nu}(x)\right] \\ &= x^{-\nu} \nu x^{\nu-1}J_{\nu}(x)+x^{-\nu}x^{\nu}J_{\nu}^{\prime}(x) \\ &= \nu x^{-1}J_{\nu}(x) + J_{\nu}^{\prime}(x) \end{align*} \tag{3}

Jν+1(x)=xνddx[xνJν(x)]=xν(ν)xν1Jν(x)xνxνJν(x)=νx1Jν(x)Jν(x)(4) \begin{align*} J_{\nu+1}(x) &= -x^{\nu} \frac{d}{dx}\left[x^{-\nu} J_{\nu}(x) \right] \\ &= -x^{\nu}(-\nu) x^{-\nu-1}J_{\nu}(x)-x^{\nu}x^{-\nu}J_{\nu}^{\prime}(x) \\ &= \nu x^{-1}J_{\nu}(x) - J_{\nu}^{\prime}(x) \end{align*} \tag{4}

(3)+(4)(3)+(4)を計算すると

Jν1+Jν+1(x)=2νxJν(x) J_{\nu-1}+J_{\nu+1}(x)=\frac{2\nu}{x}J_{\nu}(x)

(3)(4)(3)-(4)を計算すると

Jν1Jν+1(x)=2Jν(x) J_{\nu-1}-J_{\nu+1}(x)=2J_{\nu}^{\prime}(x)

(e)(e)

(a)(a)(b)(b)の左辺を展開して整理すると簡単に得ることができる。まずは(a)(a)の左辺を展開し、Jν(x)J_{\nu}^{\prime}(x)について整理すると

ddx[xνJν(x)]=xνJν1(x)νxν1Jν(x)+xνJν(x)=xνJν1(x)Jν(x)=νxJν(x)+Jν1(x) \begin{align*} \frac{d}{dx}[x^{\nu} J_{\nu}(x)] &=x^{\nu}J_{\nu-1}(x) \\ \nu x^{\nu-1}J_{\nu}(x) + x^{\nu} J_{\nu}^{\prime}(x) &= x^{\nu}J_{\nu-1}(x) \\ J_{\nu}^{\prime}(x) &= -\frac{\nu}{x}J_{\nu}(x)+J_{\nu-1}(x) \end{align*}

(b)(b)に対しても同じ作業をすると

ddx[xνJν(x)]=xνJν+1(x)νxν1Jν(x)+xνJν(x)=xνJν+1(x)Jν(x)=νxJν(x)Jν+1(x) \begin{align*} \frac{d}{dx}[x^{-\nu} J_{\nu}(x)] &=-x^{-\nu}J_{\nu+1}(x) \\ -\nu x^{-\nu-1}J_{\nu}(x) + x^{-\nu} J_{\nu}^{\prime}(x) &=-x^{-\nu}J_{\nu+1}(x) \\ J_{\nu}^{\prime}(x) &= \frac{\nu}{x}J_{\nu}(x)-J_{\nu+1}(x) \end{align*}

従って

Jν(x)=νxJν(x)+Jν1(x)=νxJν(x)Jν+1(x) J_{\nu}^{\prime}(x)=-\frac{\nu}{x}J_{\nu}(x)+J_{\nu-1}(x)=\frac{\nu}{x}J_{\nu}(x)-J_{\nu+1}(x)