logo

逆双曲線関数の導関数 📂関数

逆双曲線関数の導関数

1

逆双曲線関数導関数は以下の通りです。

ddx(sinh1x)=1x2+1ddx(csch1x)=1xx2+1ddx(cosh1x)=1x21ddx(sech1x)=1x1x2ddx(tanh1x)=11x2ddx(coth1x)=11x2 \begin{align*} \dfrac{d}{dx} (\sinh^{-1} x) &= \dfrac{1}{\sqrt{x^{2} + 1}} \qquad & \dfrac{d}{dx} (\csch^{-1} x) &= - \dfrac{1}{|x|\sqrt{x^{2} + 1}} \\ \dfrac{d}{dx} (\cosh^{-1} x) &= \dfrac{1}{\sqrt{x^{2} - 1}} \qquad & \dfrac{d}{dx} (\sech^{-1} x) &= - \dfrac{1}{x\sqrt{1 - x^{2}}} \\ \dfrac{d}{dx} (\tanh^{-1} x) &= \dfrac{1}{1 - x^{2}} \qquad & \dfrac{d}{dx} (\coth^{-1} x) &= \dfrac{1}{1 - x^{2}} \end{align*}

説明

逆双曲線関数のクローズドフォームは以下のようです。

sinh1x=ln(x+x2+1)xRcosh1x=ln(x+x21)x1tanh1x=12ln(1+x1x)1<x<1 \begin{align*} \sinh^{-1} x &= \ln \left( x + \sqrt{x^{2} + 1} \right) & x \in \mathbb{R} \\ \cosh^{-1} x &= \ln \left( x + \sqrt{x^{2} - 1} \right) & x \le 1 \\ \tanh^{-1} x &= \dfrac{1}{2} \ln \left( \dfrac{1 + x}{1 - x} \right) & -1 \lt x \lt 1 \\ \end{align*}

証明

(sinh1x)(\sinh^{-1} x)^{\prime}

連鎖律を使用

y=sinh1xy = \sinh^{-1} xとする。するとsinhy=x\sinh y = xであるため、両辺をxxに関して微分すると連鎖律により、

ddxsinhy=(x)    ddysinhydydx=1    coshydydx=1 \dfrac{d}{dx} \sinh y = (x)^{\prime} \implies \dfrac{d}{dy} \sinh y \dfrac{dy}{dx} = 1 \implies \cosh y \dfrac{dy}{dx} = 1

したがって、次を得る。

dydx=1coshy \dfrac{dy}{dx} = \dfrac{1}{\cosh y}

しかしcosh2ysinh2y=1\cosh^{2} y - \sinh^{2} y = 1であり、sinhy=x\sinh y = xであるため、

dydx=1sinh2y+1=1x2+1 \dfrac{dy}{dx} = \dfrac{1}{\sqrt{\sinh^{2} y + 1}} = \dfrac{1}{\sqrt{x^{2} + 1}}

対数関数の微分法を使用

対数関数の微分法によって、

ddx(sinh1x)=ddxln(x+x2+1)=(x+x2+1)x+x2+1=1+2x2x2+1x+x2+1=x+x2+1x2+1x+x2+1=x+x2+1(x+x2+1)x2+1=1x2+1 \begin{align*} \dfrac{d}{dx} (\sinh^{-1} x) &= \dfrac{d}{dx} \ln \left( x + \sqrt{x^{2} + 1} \right) = \dfrac{(x + \sqrt{x^{2} + 1})^{\prime}}{x + \sqrt{x^{2} + 1}} \\[1em] &= \dfrac{1 + \dfrac{2x}{2\sqrt{x^{2} + 1}}}{x + \sqrt{x^{2} + 1}} = \dfrac{\dfrac{x + \sqrt{x^{2} + 1}}{\sqrt{x^{2} + 1}}}{x + \sqrt{x^{2} + 1}} \\[1em] &= \dfrac{x + \sqrt{x^{2} + 1}}{(x + \sqrt{x^{2} + 1})\sqrt{x^{2} + 1}} = \dfrac{1}{\sqrt{x^{2} + 1}} \\[1em] \end{align*}

(cosh1x)(\cosh^{-1} x)^{\prime}

上記の方法で得られるため、手順のみ簡単に列挙します。

y=cosh1x    coshy=x    ddxcoshy=1    sinhydydx=1    dydx=1sinhy    dydx=1cosh2y+1=1x2+1 \begin{align*} && & y = \cosh^{-1} x \implies \cosh y = x \implies \dfrac{d}{dx} \cosh y = 1 \\ \implies && & \sinh y \dfrac{dy}{dx} = 1 \implies \dfrac{dy}{dx} = \dfrac{1}{\sinh y} \\ \implies && & \dfrac{dy}{dx} = \dfrac{1}{\sqrt{\cosh^{2} y + 1}} = \dfrac{1}{\sqrt{x^{2} + 1}} \end{align*}

(tanh1x)(\tanh^{-1} x)^{\prime}

上記の方法で得られるため、手順のみ簡単に列挙します。

y=tanh1x    tanhy=x    ddxtanhy=1    sech2ydydx=1    dydx=1sech2y    dydx=11tanh2y=11x2 \begin{align*} && & y = \tanh^{-1} x \implies \tanh y = x \implies \dfrac{d}{dx} \tanh y = 1 \\ \implies && & \sech^{2} y \dfrac{dy}{dx} = 1 \implies \dfrac{dy}{dx} = \dfrac{1}{\sech^{2} y} \\ \implies && & \dfrac{dy}{dx} = \dfrac{1}{1 - \tanh^{2} y} = \dfrac{1}{1 - x^{2}} \end{align*}


  1. James Stewart, Daniel Clegg, and Saleem Watson, Calculus (early transcendentals, 9E), p261-266\ ↩︎