logo

라플라스 변환의 평행이동 📂상미분방정식

라플라스 변환의 평행이동

공식1

함수 f(t)f(t)라플라스 변환 F(s)=L{f(t)}F(s)=\mathcal{L} \left\{ f(t) \right\}s>as>a일 때 존재한다고 하자. 그러면 상수 cc에 대해서 다음이 성립한다.

L{ectf(t)}=F(sc),s>a+cL1{F(sc)}=ectf(t) \begin{align*} \mathcal{L} \left\{ e^{ct}f(t) \right\}&=F(s-c), &s>a+c \\ \mathcal{L^{-1}} \left\{ F(s-c) \right\}&=e^{ct}f(t) & \end{align*}

설명

ff에 지수함수를 곱하는 것과 FF를 평행이동하는 것이 같다는 의미이다.

유도

L{ectf(t)}=0estectf(t)dt=0e(sc)tf(t)dt=F(sc) \begin{align*} \mathcal{L} \left\{ e^{ct}f(t) \right\} &=\int_{0}^\infty e^{-st}e^{ct}f(t)dt \\ &= \int_{0}^\infty e^{-(s-c)t}f(t)dt \\ &= F(s-c) \end{align*}

따름정리

L{ecttp}=Γ(p+1)(sc)p+1L{ectsin(at)}=a(sc)2+a2L{ectcos(at)}=sc(sc)2+a2L{ectsinh(at)}=a(sc)2a2L{ectcosh(at)}=sc(sc)2a2 \begin{align*} \mathcal{L} \left\{ e^{ct} t^p \right\} &=\dfrac{\Gamma (p+1)}{(s-c)^{p+1}} \\ \mathcal{L} \left\{ e^{ct} \sin (at) \right\} &=\dfrac{a}{(s-c)^2+a^2} \\ \mathcal{L} \left\{ e^{ct} \cos (at) \right\} &= \dfrac{s-c}{(s-c)^2+a^2} \\ \mathcal{L} \left\{ e^{ct} \sinh (at) \right\} &= \dfrac{a}{(s-c)^2-a^2} \\ \mathcal{L} \left\{ e^{ct} \cosh (at) \right\} &= \dfrac{s-c}{(s-c)^2-a^2} \end{align*}

같이보기


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p262 ↩︎