logo

라플라스 변환 표 📂상미분방정식

라플라스 변환 표

공식1

라플라스 변환 표이다.

$f(t)=\mathcal{L^{-1}}$$F(s)=\mathcal{L} \left\{ f(t) \right\}$유도과정
$1$$\dfrac{1}{s}$링크
$e^{at}$$\dfrac{1}{s-a}$링크
$t^n$$\dfrac{n!}{s^{n+1}}$링크
$t^{p}$$\dfrac{ \Gamma (p+1) }{ s^{p+1}}$링크
$t^{p}e^{at}$$\dfrac{ \Gamma (p+1) }{ (s-a)^{p+1}}$링크
$\sin (at)$$\dfrac{a}{s^2+a^2}$링크
$\cos (at)$$\dfrac{s}{s^2+a^2}$링크
$e^{at}\sin(bt)$$\dfrac{b}{(s-a)^2 +b^2}$링크
$e^{at}\cos(bt)$$\dfrac{s-a}{(s-a)^2+b^2}$링크
$\sinh (at)$$\dfrac{a}{s^2-a^2}$링크
$\cosh (at)$$\dfrac{s}{s^2-a^2}$링크
$e^{at} \sinh (bt)$$\dfrac{b}{(s-a)^2-b^2}$링크
$e^{at} \cosh (bt)$$\dfrac{s-a}{(s-a)^2-b^2}$링크
$u_{c}(t)= \begin{cases} 0 & t<c \\ 1 & t\ge c\end{cases}$$\dfrac{e^{-cs}}{s}$링크
$u_{c}(t)f(t-c)$$e^{-cs}F(s)$링크
$f^{\prime}(t)$$s\mathcal{L} \left\{ f(t) \right\} -f(0)$링크
$f^{(n)}$${s^n\mathcal {L}\left\{ f(t) \right\} -s^{n-1}f(0) - \cdots -f^{(n-1)}(0) }$링크
$f(t)=f(t+T)$$\dfrac{\displaystyle \int_{0}^T e^{-st}f(t)dt}{1-e^{-st}}$링크
$\delta (t-t_{0})$$e^{-st_{0}}$링크
$f(ct)$$\frac{1}{c}F \left( \frac{s}{c} \right)$링크
$\frac{1}{k}f (\frac{t}{k} )$$F(ks)$링크
$\frac{1}{a} e^{-\frac{b} {a}t}f\left(\frac{t}{a}\right)$$F(as+b)$링크
$t^{n}f(t)$$(-1)^{n}F^{(n)}(s)$링크

  1. William E. Boyce , Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), Chapter6 The Laplace Transform ↩︎