logo

실벡터공간에서 내적이란? 📂선형대수

실벡터공간에서 내적이란?

정의1

VV실벡터공간이라고 하자. VV 위의 내적inner product이란, 아래의 조건을 만족하면서, VV 내의 두 벡터를 하나의 실수 u,v\langle \mathbf{u}, \mathbf{v} \rangle에 대응시키는 함수를 말한다.

u,v,wV\mathbf{u}, \mathbf{v}, \mathbf{w} \in V이고 kRk \in \mathbb{R}일 때,

  • u,v=v,u\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle
  • u+v,w=u,w+v,w\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle
  • ku,v=ku,v\langle k \mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle
  • v,v0andv,v=0    v=0\langle \mathbf{v}, \mathbf{v} \rangle \ge 0 \quad \text{and} \quad \langle \mathbf{v}, \mathbf{v} \rangle = 0 \iff \mathbf{v}=\mathbf{0}

설명

정의를 읽어보면 고등학교때부터 사용하던 그 내적을 표현하기 위해서 당연히 만족해야할 조건이라는 생각이 들 것이다. 개념적으로는 이보다 더 일반화되지는 않고 실수를 복소수로 확장하는 정도 가 남아있다. 선형대수를 배운다면 내적을 실수값을 갖도록 정의하는 정도에서 그칠 것이고, 함수해석이나 힐베르트공간을 배울 때에서는 복소수값을 갖는 것까지 일반화시켜서 다룰 것이다.

유클리드공간에서는 보통 [거리], [놈], [내적(점곱)]을 각각 정의한 뒤 이 사이의 관계식을 성질로써 유도하지만 일반벡터공간에서 위와 같이 내적을 일반화하면 놈과 거리도 다음과 같이 자연스럽게 정의된다.

v:=v,vd(u,v):=uv=uv,uv \begin{align*} \| \mathbf{v} \| &:= \sqrt{ \langle \mathbf{v}, \mathbf{v} \rangle } \\ d( \mathbf{u}, \mathbf{v}) &:= \| \mathbf{u} - \mathbf{v} \| = \sqrt{ \langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle } \end{align*}

여러공간에서의 내적

유클리드공간

유클리드공간에서 다음과 같이 가중내적weighted inner product을 정의할 수 있다.


u,vRn\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}, wiRw_{i} \mathbb{R}에 대해서,

u,v=w1u1v1+w2u2v2++wnunvn \langle \mathbf{u}, \mathbf{v} \rangle = w_{1}u_{1}v_{1} + w_{2}u_{2}v_{2} + \cdots + w_{n}u_{n}v_{n}


물리 실험에서 관측된 값을 x1,xnx_{1}, \dots x_{n}, 관측횟수를 f1+f2++fn=mf_{1}+f_{2}+\cdots +f_{n}=m이라 하면 w1=w2==wn=1mw_{1}=w_{2}=\cdots=w_{n}=\frac{1}{m}이라 함은 가중내적으로 평균을 표현할 수 있다.

x,f=1m(f1x1+f2x2+fnxn) \langle \mathbf{x}, \mathbf{f} \rangle = \dfrac{1}{m} \left( f_{1}x_{1} + f_{2}x_{2} + \cdots f_{n}x_{n} \right)

행렬공간

행렬공간 MnnM_{nn}에서 내적은 다음과 같이 정의된다.


U,VMnn(C)U, V \in M_{nn}(\mathbb{C})에 대해서,

U,V=Tr(UV) \langle U, V \rangle = \text{Tr}(U^{\ast} V)

이때 Tr\text{Tr}대각합이다. 이를 다음과 같이 표기하고 프로베니우스 내적Frobenius inner product이라 부르기도 한다.

U,VF \left\langle U, V \right\rangle_{F}


2×22 \times 2 행렬의 예시를 보면 위의 정의가 각 성분끼리의 곱들의 합임을 쉽게 알아볼 수 있다. 두 행렬 U,VU, V가 다음과 같다고 하자.

U=[u1u2u3u4],V=[v1v2v3v4] U=\begin{bmatrix} u_{1} & u_{2} \\ u_{3} & u_{4} \end{bmatrix} ,\quad V=\begin{bmatrix} v_{1} & v_{2} \\ v_{3} & v_{4} \end{bmatrix}

그러면

UV=[u1u3u2u4][v1 v2 v3 v4 ]=[u1v1 +u3v3 u1v2 +u3v4 u2v1 +u4v3 u2v2 +u4v4 ]    Tr(UV)=u1v1 +u2v2 +u3v3 +u4v4  \begin{align*} && U^{\ast} V &= \begin{bmatrix} u_{1}^{\ast} & u_{3}^{\ast} \\ u_{2}^{\ast} & u_{4}^{\ast} \end{bmatrix} \begin{bmatrix} v_{1}^{\ } & v_{2}^{\ } \\ v_{3}^{\ } & v_{4}^{\ } \end{bmatrix} \\ && &= \begin{bmatrix} u_{1}^{\ast}v_{1}^{\ } + u_{3}^{\ast}v_{3}^{\ } & u_{1}^{\ast}v_{2}^{\ } + u_{3}^{\ast}v_{4}^{\ } \\ u_{2}^{\ast}v_{1}^{\ } + u_{4}^{\ast}v_{3}^{\ } & u_{2}^{\ast}v_{2}^{\ } + u_{4}^{\ast}v_{4}^{\ } \end{bmatrix} \\ \implies && \text{Tr}(U^{\ast}V) &= u_{1}^{\ast}v_{1}^{\ } + u_{2}^{\ast}v_{2}^{\ } + u_{3}^{\ast}v_{3}^{\ } + u_{4}^{\ast}v_{4}^{\ } \end{align*}

같이보기


  1. Howard Anton, Elementary Linear Algebra: Aplications Version (12th Edition, 2019), p341-349 ↩︎