logo

브라운의 다리 📂확률미분방정식

브라운의 다리

정의 1 2

dYt=bYt1tdt+dWt,t[0,1),Y0=a d Y_{t} = {{ b - Y_{t} } \over { 1 - t }} dt + d W_{t} \qquad, t \in [0,1), Y_{0} = a a,bRa, b \in \mathbb{R} 이라고 하자. 위의 11차원 확률미분방정식의 솔루션인 확률과정 YtY_{t} 를 (aa 에서 bb 로의) 브라우니안 브릿지brownian Bridge라고 한다. Yt=a(1t)+bt+(1t)0t11sdWs Y_{t} = a (1-t) + bt + (1-t) \int_{0}^{t} {{ 1 } \over { 1 - s }} d W_{s}

설명

브라운의 다리aa 에서 시작해서 중간에 아무리 방황하더라도 결국에는 bb에서 멈추게 되는 아주 독특한 확률과정이다. t1t \to 1 일 때 YtY_{t}거의 확실히 bb 로 수렴한다.

YtY_{t}bb 에서 멀어지면 멀어질수록 드리프트drift항의 분자에서 bYtb-Y_{t} 가 크게 영향을 미치게 되며, 특히 t1t \approx 1 에서 분모가 00 에 한없이 가까워지며 그동안의 방황을 만회하게 된다.


  1. Øksendal. (2003). Stochastic Differential Equations: An Introduction with Applications: p75. ↩︎

  2. Panik. (2017). Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: p145~147. ↩︎