확률미분방정식에서의 백색 잡음
모티브
$$ \xi (t) \overset{?}{:=} \dot{W}(t) = {{d W (t)} \over {dt}} $$
위와 같이 위너 프로세스의 도함수로써 정의된 $\xi$ 를 상상해보자. 브라운 모션을 생각해봤을 때 이 $\xi (t)$ 는 시점 $t$ 에 무작위적인 등락을 표현하는 노이즈가 될 것이다. 겉보기에는 아주 직관적이고 전혀 어색하지 않으나, 안타깝게도 보편적인 센스에서 $\dot{W}(t)$ 의 존재성에 문제가 있다.
위너 프로세스의 미분불가능성 1
$$ Y_{h} := {{W (t + h) - W(t)} \over {h}} $$
위너 프로세스 $\left\{ W_{t} \right\}_{t \ge 0}$ 에 대해 위와 같은 평균변화율 확률과정 $\left\{ Y_{h} \right\}$ 을 생각해보자. 자명하게도 $Y_{h}$ 는 정규분포를 따르고, 그 평균과 분산은 다음과 같이 계산된다. $$ \begin{align*} E \left( Y_{h} \right) & = {{ 1 } \over { h }} E \left( W (t+h) - W (t) \right) = 0 \\ \operatorname{Var} \left( Y_{h} \right) & = {{ 1 } \over { h^{2} }} \operatorname{Var} \left( W (t+h) - W (t) \right) = {{ 1 } \over { h^{2} }} \cdot h = {{ 1 } \over { h }} \end{align*} $$ 따라서 $Y_{n}$ 은 표준정규분포 $N(0,1)$ 를 따르는 확률변수 $Z$ 에 대해 $\displaystyle Y_{h} = {{ 1 } \over { \sqrt{h} }} Z$ 와 같이 나타낼 수 있다. 이 때 적당한 상수 $k > 0$ 에 대해 확률 $$ P \left( \left| Y_{h} \right| > k \right) = P \left( \left| {{ Z } \over { \sqrt{h} }} \right| > k \right) $$ 을 생각해보자. $k$ 가 무엇이든 $Z$ 와 함께 픽스된 와중에 $h \to 0$ 이면 $\left| {{ Z } \over { \sqrt{h} }} \right|$ 는 무한대로 발산하며, 따라서 $$ \lim_{h \to 0} P \left( \left| {{ Z } \over { \sqrt{h} }} \right| > k \right) = 1 $$ 이 성립한다. 이를 바꿔 말하면 평균변화율 확률과정이라고 생각했던 $\left\{ Y_{h} \right\}$ 가 사실 (확률) 발산하며, 결국 $W(t)$ 는 어디에서도 미분할 수 없음을 알 수 있다.
빌드업
위너 프로세스와 전통적인 도함수의 개념으로는 백색 잡음을 정의하는 것에 다소 문제가 있었으니, 이를 우회해서 정의를 내리려고 한다. 우선 $\left\{ X_{t} \right\}_{t \ge 0}$ 이 항상 유한분산 정규분포를 따르는 확률과정이라고 하자. 다시 말해, 모든 $t \ge 0$ 에 대해 $$ E \left( X_{t}^{2} \right) < \infty $$ 이다. 모든 $t_{1}, t_{2} \ge 0$ 에 대해 $$ E \left( X_{t_{1}} \right) = E \left( X_{t_{2}} \right) $$ 이면서 어떤 함수 $h = \mathbb{R} \to \mathbb{R}$ 에 대해 둘의 공분산이 $$ \operatorname{Cov} \left( X_{t_{1}} , X_{t_{2}} \right) = E \left( X_{t_{1}} \cdot X_{t_{2}} \right) = h \left( t_{2} - t_{1} \right) $$ 와 같이 나타나면 이 가우시안 확률과정 $\left\{ X_{t} \right\}_{t \ge 0}$ 이 넓은 의미에서 정상적stationary in the wide Sence이라 한다. 이는 수식적으로 보았을 때 일정한 평균을 가지면서 시차에 따른 분산의 변화가 함수 $h$ 를 통해 설명되는 것을 표현하므로, 시계열분석에서의 정상성에서 약간 후퇴한 정도의 적절한 표현이라 할 수 있다.
디랙 점 질량 함수: $\delta_{x_0}$를 아래와 같이 정의된 디랙 측도라고 하자. $$ \delta_{x_0} (E) := \begin{cases} 1 & x_0 \in E \\ 0 & x_0 \notin E \end{cases} $$
특히 여기서 만약 $X_{0} = 0$ 이고 $h$ 가 $x_{0} =0$ 인 디랙 함수라고하면 $\left\{ X_{t} \right\}_{t \ge 0}$ 의 그 직관적인 의미는 다음을 모두 만족하는 노이즈가 된다. $$ \begin{align*} X_{t} & \sim N \left( 0 , 1 \right) & \left( \because E X_{0} = 0 \land \delta_{0} = 1 \implies E X_{t}^{2} = 1 \right) \\ X_{t_{1}} & \perp X_{t_{2}} & \left( \because \delta_{0} = 0 \implies \operatorname{Cov} \left( X_{t_{1}}, X_{t_{2}} \right) = 0 \right) \end{align*} $$
이는 노이즈는 드리프트가 없고―모평균이 $0$이고 분산이 일정한 정규분포를 따르며, 어떤 시점의 노이즈든 다른 시점에서 어떤 노이즈와 독립임을 의미한다. 위너 프로세스의 정의에서 보았을 때 (i)과 (ii)를 만족시키는 성질이며, (iii)과 (iv)는 한 점이라기보다는 어떤 구간을 생각할 때 의미를 가지기 때문에 백색 잡음을 논할 때는 별 의미가 없다.
위너 프로세스: $s< t < t+u$ 라고 할 때, 다음의 조건들을 만족하는 확률과정 $\left\{ W_{t} \right\}$ 를 위너 프로세스라 한다.
- (i): $W_{0} = 0$
- (ii): $\left( W_{t+u} - W_{t} \right) \perp W_{s}$
- (iii): $\left( W_{t+u} - W_{t} \right) \sim N ( 0, u )$
- (iv): $W_{t}$ 의 샘플 패스는 거의 어디서나 연속이다.
이에 따라 우리는 진짜 위너 프로세스의 도함수로써가 아니라 각 시점의 노이즈로써 충분한 다음의 정의를 도입하려 한다. 실제로는 이러한 정의 이후로 수식에서도 자연스럽게 다음과 같은 표현을 사용한다. $$ \begin{align*} \xi (t) =& {{d W (t)} \over {dt}} \\ d W (t) =& \text{noise} \cdot dt \end{align*} $$
위너 프로세스의 정의를 초함수로 확장하면, 위너 프로세스의 초함수적 도함수는 백색잡음의 정의를 만족한다. 다시말해 백색잡음은 위너 프로세스의 약 도함수이다.
정의 2
가우시안 확률과정 $\left\{ \xi (t) \right\}$ 가 다음의 두 조건을 만족하는 방식으로 광의적인 정상성을 가지면 백색 잡음white noise이라 한다.
- (i): $E \left( \xi (0) \right) = 0$
- (ii): $\operatorname{Cov} \left( \xi \left( t_{1} \right), \xi \left( t_{2} \right) \right) = \delta_{0}$