logo

定数係数の2階線形同次微分方程式と特性方程式 📂微分方程式

定数係数の2階線形同次微分方程式と特性方程式

定理1

定数係数の2次線形同次微分方程式ay+by+cy=0a y^{\prime \prime} + by^\prime +cy=0の一般解は、以下の通りである。

y(x)=Aer1x+Ber2x y(x)=A e^{r_{1} x}+Be^{r_2 x}

この時、r1,2=b±b24ac2ar_{1,2}=\dfrac{-b \pm \sqrt{b^2-4ac}} {2a}

ay+cy=0a y^{\prime \prime} + cy = 0の解は、以下の通りである。

y(x)=Aeicax+Beicax=Ccos(cax)+Dsin(cax) y(x) = A e^{i\sqrt{\frac{c}{a}} x}+Be^{-i\sqrt{\frac{c}{a}} x} = C\cos{\textstyle (\sqrt{\frac{c}{a}}x)} + D\sin{\textstyle (\sqrt{\frac{c}{a}}x)}

解法

ad2dx2y+bddxy+cy=0 \begin{equation} a\dfrac{d^2}{dx^2}y+b\dfrac{d}{dx}y+cy = 0 \label{eq1} \end{equation}

まず、微分演算子DDを、以下のように定義しよう。

D:=ddxDf=D(f)=dfdx D:=\dfrac{d}{dx} \\ Df = D(f) = \dfrac{df}{dx}

すると、DDD(ay1+y2)=ady1dx+dy2dx=aDy1+Dy2D(ay_{1}+y_{2}) = a\dfrac{dy_{1}}{dx} + \dfrac{dy_{2}}{dx} = aDy_{1}+Dy_{2}を満たすため、線形演算子である。DDを利用して式(eq1)\eqref{eq1}を表すと、以下のようになる。

aD2y+bDy+cy=0    (aD2+bD+c)y=0 \begin{align} &&aD^2y+bDy+cy&=0 \\ \implies&& (aD^2+bD+c)y&=0 \end{align}

この時、Dy=ryDy=ryを満たす定数rrがあるとすると、上の式から以下の式を得る。

(aD2+bD+c)y=(ar2+br+c)y=0 (aD^2+bD+c) y = (ar^2+br+c) y = 0

私たちはy0y \ne 0を満たす解を探しているため、以下の条件を得る。

aD2+bD+c=ar2+br+c=0 aD^{2} + bD + c = ar^{2}+br+c = 0

この2次方程式を特性方程式と呼ぶ。

r1=b+b24ac2ar2=bb24ac2a \begin{align*} r_{1} &= \dfrac{-b + \sqrt{b^2-4ac}} {2a} \\ r_2 &=\dfrac{-b - \sqrt{b^2-4ac}} {2a} \end{align*}

r1,r2r_{1}, r_{2}が互いに異なる二つの実数だとしよう。すると、上の式から、以下の式を得る。

(aD2+bD+c)y=0     a(Dr1)(Dr2)y=0 (aD^2 + bD+c)y=0 \implies \ a(D-r_{1})(D-r_2)y=0

  • ケース1. (Dr1)y=0(D-r_{1})y=0

    dydx=r1y\dfrac{dy}{dx}=r_{1}yであり、変数分離法を通じてyyを求めると、

    y1(x)=Aer1t y_{1}(x)=Ae^{r_{1}t}

  • ケース2. (Dr2)y=0(D-r_2)y=0

    同様にyyを求めると、

    y2(x)=Ber2t y_{2}(x)=Be^{r_2t}

y1y_{1}y2y_{2}が与えられた微分方程式の解ならば、y1+y2y_{1}+y_{2}も解であるため、与えられた微分方程式の一般解は、

y(x)=y1+y2=Aer1t+Ber2t y(x)=y_{1}+y_{2}=Ae^{r_{1}t} + Be^{r_2t}


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p103-109 ↩︎