共分散の様々な性質
📂数理統計学共分散の様々な性質
定義と性質
平均がそれぞれμX、μYである確率変数XとYについて、Cov(X,Y):=E[(X−μX)(Y−μY)]はXとYの共分散covarianceと定義される。共分散は以下の性質を持っている。
- [1]: Var(X)=Cov(X,X)
- [2]: Cov(X,Y)=Cov(Y,X)
- [3]: Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)
- [4]: Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)
- [5]: Cov(aX+b,cY+d)=acCov(X,Y)
説明
共分散は二つの変数の線形の相関関係を示し、分散と異なり0はもちろん負の値も取り得る。
証明
[1]
Cov(X,X)===E[(X−μX)(X−μX)]E[(X−μX)2]Var(X)
■
[2]
Cov(X,Y)===E[(X−μX)(Y−μY)]E[(Y−μY)(X−μX)]Cov(X,Y)
■
[3]
Var(X+Y)=====E[(X+Y−μX−μY)2]E[{(X−μX)+(Y−μY)}2]E[(X−μX)2+2(X−μX)(Y−μY)+(Y−μY)2]E[(X−μX)2]+2E[(X−μX)(Y−μY)]+E[(Y−μY)2]Var(X)+2Cov(X,Y)+Var(Y)
■
[4]
Cov(X+Y,Z)====E[(X+Y−μX−μY)(Z−μZ)]E[{(X−μX)+(Y−μY)}(Z−μZ)]E[(X−μX)(Z−μZ)]+E[(Y−μY)(Z−μZ)]Cov(X,Z)+Cov(Y,Z)
■
[5]
Cov(aX+b,cY+d)=====E[(aX+b−aμX−b)(cY+d−cμY−d)]E[(aX−aμX)(cY−cμY)]E[ac(X−μX)(Y−μY)]acE[(X−μX)(Y−μY)]acCov(X,Y)
■
併せて見る