逆三角関数
定義1
三角関数の逆関数を逆三角関数と言って、三角関数の名前にarc-を付けて表記する。
$$ \begin{align*} \arcsin x &= \sin^{-1} x \qquad & \operatorname{arccsc} x &= \csc^{-1} x \\ \arccos x &= \cos^{-1} x \qquad & \operatorname{arcsec} x &= \sec^{-1} x \\ \arctan x &= \tan^{-1} x \qquad & \operatorname{arccot} x &= \cot^{-1} x \end{align*} $$
説明
もちろん三角関数自体が全単射ではないから、これらの定義域は普通$\displaystyle \left[ -\pi , \pi \right]$や$\displaystyle \left[ -{{\pi}\over{2}} , {{\pi}\over{2}} \right]$に制限される。
プログラミングではわざわざarc-
を使わず、アークタンジェント関数をatan()
のようにa-
だけ付けて定義するほうがいい。これはフォートランから続いている慣習だ。
定義域と値域
$$ \begin{align*} \sin^{-1} &: [-1, 1] \to \left[ -{{\pi}\over{2}} , {{\pi}\over{2}} \right] \qquad & \csc^{-1} &: \mathbb{R} \setminus (-1, 1) \to (0, \pi/2] \cup (\pi, 3\pi/2] \\[1em] \cos^{-1} &: [-1, 1] \to [0, \pi] \qquad & \sec^{-1} &: \mathbb{R} \setminus (-1, 1) \to [0, \pi/2) \cup [\pi, 3\pi/2) \\[1em] \tan^{-1} &: \mathbb{R} \to \left( -{{\pi}\over{2}} , {{\pi}\over{2}} \right) \qquad & \cot^{-1} &: \mathbb{R} \to (0, \pi) \end{align*} $$
James Stewart, Daniel Clegg, and Saleem Watson, Calculus (early transcendentals, 9E), p61-64 ↩︎