logo

曲線座標系のスケールファクター 📂数理物理学

曲線座標系のスケールファクター

ビルドアップ

曲線座標系では、スケールファクターは各成分が長さの次元を持つように掛け合わされる要素だ。例えば、極座標系は$(r,\theta)$と表され、$\theta$が変わるたびに座標が動く距離は弧の長さであり、それは$l=r\theta$だ。ここで、$r$のようなものをスケールファクターと呼ぶ。任意の座標系の変数を$(q_{1},q_{2},q_{3})$としよう。すると、スケールファクターを利用して任意の座標系における微小長さ、微小面積、微小体積を以下のように表すことができる。

$$ \begin{align*} d\mathbf{r} &=h_{1}dq_{1}\hat{\mathbf{q}_{1}}+h_{2}dq_{2}\hat{\mathbf{q}_{2}}+h_{3}dq_{3}\hat{\mathbf{q}_{3}} \\ ds^{2} &=(h_{1}dq_{1})^{2}+(h_{2}dq_{2})^{2}+(h_{3}dq_{3})^{2} \\ dV &= h_{1}h_{2}h_{3}dq_{1}dq_{2}dq_{3} \end{align*} $$

この時、$h_{i}=\sqrt{g_{ii}}=\sqrt{\frac{ \partial \mathbf{r}}{ \partial q_{i} }\cdot \frac{ \partial \mathbf{r}}{ \partial q_{i} }}$である。各座標系ごとにスケールファクター、微小長さ、微小面積、微小体積は次のとおりである。

公式

  • 極座標系:

    $$ h_{1}=1,\quad h_{2}=r $$

    $$ \begin{align*} d\mathbf{r} &=dr\hat{\mathbf{r}}+rd\theta \hat{\boldsymbol{\theta}} \\ \\ ds^{2}&=dr^{2}+r^{2}d\theta^{2} \\ \\ dV&= rdrd\theta \end{align*} $$

  • 円柱座標系:

    $$ h_{1}=1, \quad h_{2}=\rho,\quad h_{3}=1 $$

    $$ \begin{align*} d\mathbf{r}&=d\rho \hat{\mathbf{\rho}}+\rho d\phi \hat{\boldsymbol{\phi}}+dz\hat{\mathbf {z}} \\ \\ ds^{2}&=d\rho ^{2}+\rho ^{2}d\phi^{2}+dz^{2} \\ \\ dV&= \rho d\rho d\phi dz \end{align*} $$

  • 球座標系:

    $$ h_{1}=1,\quad h_{2}=r,\quad h_{3}=r\sin\theta $$

    $$ \begin{align*} d\mathbf{r}&=dr \hat{\mathbf{r}}+r d\theta \hat{\boldsymbol{\theta}}+r\sin\theta d\phi\hat {\mathbf{\boldsymbol{\phi}}} \\ \\ ds^{2}&=dr ^{2}+r ^{2}d\theta^{2}+r^{2}\sin^{2}\theta d\phi^{2} \\ \\ dV&= r^{2}\sin\theta dr d \theta d \phi \end{align*} $$

証明

極座標系に関する証明はできるだけ詳細に書き、その他の座標系の証明は簡潔に書いた。

5F5B3E523.png

極座標系

$q_{1}=r$、$q_{2}=\theta$であり、次のように成り立つ。

$$ \mathbf{r}=x\hat{\mathbf{x}}+y\hat{\mathbf{y}}=r\cos \theta \hat{\mathbf{x}} + r \sin \theta \hat{\mathbf{y}} $$

従って、次のようになる。

$$ \begin{align*} h_{1} &= \sqrt{\frac{ \partial \mathbf{r}}{ \partial q_{1}} \cdot \frac{ \partial \mathbf{r}}{ \partial q_{1} }} =\sqrt{\frac{ \partial \mathbf{r}}{ \partial r} \cdot \frac{ \partial \mathbf{r}}{ \partial r }} \\ &= \sqrt{\frac{ \partial (r\cos \theta \hat{\mathbf{x}} + r \sin \theta \hat{\mathbf{y}})}{ \partial r} \cdot \frac{ \partial (r\cos \theta \hat{\mathbf{x}} + r \sin \theta \hat{\mathbf{y}})}{ \partial r }} \\ &= \sqrt{(\cos \theta \hat{\mathbf{x}} + \sin \theta \hat{\mathbf{y}})\cdot(\cos \theta \hat{\mathbf{x}} + \sin \theta \hat{\mathbf{y}})} \\ &= \sqrt{\cos ^{2}\theta + \sin^{2}\theta} \\ &=1 \\ \\ h_{2}&=\sqrt{\frac{ \partial \mathbf{r}}{ \partial q_{1}} \cdot \frac{ \partial \mathbf{r}}{ \partial q_{1} }} =\sqrt{\frac{ \partial \mathbf{r}}{ \partial \theta} \cdot \frac{ \partial \mathbf{r}}{ \partial \theta }} \\ &= \sqrt{\frac{ \partial (r\cos \theta \hat{\mathbf{x}} + r \sin \theta \hat{\mathbf{y}})}{ \partial \theta} \cdot \frac{ \partial (r\cos \theta \hat{\mathbf{x}} + r \sin \theta \hat{\mathbf{y}})}{ \partial \theta }} \\ &= \sqrt{(-r\sin\theta \hat{\mathbf{x}} + r\cos \theta \hat{\mathbf{y}})\cdot(-r\sin\theta \hat{\mathbf{x}} + r\cos \theta \hat{\mathbf{y}})} \\ &= \sqrt{r^{2}\sin ^{2}\theta + r^{2}\cos^{2}\theta} \\ &=\sqrt{r^{2}} \\ &=r \end{align*} $$

よって、以下の式を得る。

$$ \begin{align*} d\mathbf{r}&=h_{1}dq_{1}\hat{\mathbf{q}_{1}} + h_{2}dq_{2}\hat{\mathbf{q}_{2}} \\ &=dr\hat{\mathbf{r}}+rd\theta \hat{\boldsymbol{\theta}} \\ \\ ds^{2}&=(h_{1}dq_{1})^{2}+(h_{2}dq_{2})^{2} \\ &=dr^{2}+r^{2}d\theta^{2} \\ \\ dV&=h_{1}h_{2}dq_{1}dq_{2} \\ &= rdrd\theta \end{align*} $$

円柱座標系

$q_{1}=\rho$、$q_{2}=\phi$、$q_{3}=z$があり、次のように成り立つ。

$$ \mathbf{r}=\rho\cos \phi \hat{\mathbf{x}} + \rho \sin \phi \hat{\mathbf{y}} +z\hat{\mathbf{z}} $$

従って、$h_{1}$、$h_{2}$は極座標系と同様に求められる。

$$ h_{1}=1,\quad h_{2}=r $$

$h_{3}$を計算すると、次のようになる。

$$ \begin{align*} h_{3} &=\sqrt{\frac{ \partial \mathbf{r}}{ \partial z}\cdot \frac{ \partial \mathbf{r}}{ \partial z }} \\ &= \sqrt{(\hat{\mathbf{z}})\cdot(\hat{\mathbf{z}})} \\ &=1 \end{align*} $$

従って、

$$ \begin{align*} d\mathbf{r}&=d\rho \hat{\mathbf{\rho}}+\rho d\phi \hat{\boldsymbol{\phi}}+dz\hat{\mathbf{z}} \\ \\ ds^{2}&=d\rho ^{2}+\rho ^{2}d\phi^{2}+dz^{2} \\ \\ dV&= \rho d\rho d\phi dz \end{align*} $$

球座標系

2.png

$q_{1}=r$、$q_{2}=\theta$、$q_{3}=\phi$があり、次のように成り立つ。

$$ \mathbf{r}=r\sin\theta\cos\phi \hat{\mathbf{x}} + r \sin \theta\sin \phi \hat{\mathbf{y}} +r\cos\theta\hat{\mathbf{z}} $$

従って、次のようになる。

$$ \begin{align*} h_{1} &=\sqrt{\frac{ \partial \mathbf{r}}{ \partial r}\cdot \frac{ \partial \mathbf{r}}{ \partial r }} \\ &= \sqrt{\sin^2{\theta}\cos^{2}\phi +\sin^{2}\theta\sin^{2}\phi+\cos^{2}\theta} \\ &=\sqrt{\sin^{2}\theta+\cos^{2}\theta} \\ &=1 \\ \\ h_{2} &=\sqrt{\frac{ \partial \mathbf{r}}{ \partial \theta}\cdot \frac{ \partial \mathbf{r}}{ \partial \theta }} \\ &= \sqrt{r^{2}\cos^{2}\theta \cos^{2}\phi + r^{2}\cos^{2}\theta\sin ^{2}\phi+r^{2}\sin^{2}\theta} \\ &=\sqrt{r^{2}\cos^{2}\theta+r^{2}\sin^{2}\theta} \\ &=r \\ \\ h_{3}&=\sqrt{\frac{ \partial \mathbf{r}}{ \partial \phi}\cdot \frac{ \partial \mathbf{r}}{ \partial \phi }} \\ &=\sqrt{r^{2}\sin^{2}\theta \sin ^{2}\phi+r^{2}\sin\theta^{2}\cos^{2}\phi} \\ &= \sqrt{r^{2}\sin ^{2}\theta} \\ &=r\sin\theta \end{align*} $$

よって、次のようになる。

$$ \begin{align*} d\mathbf{r}&=dr \hat{\mathbf{r}}+r d\theta \hat{\boldsymbol{\theta}}+r\sin\theta d\phi\hat{\mathbf{\boldsymbol{\phi}}} \\ \\ ds^{2}&=dr ^{2}+r ^{2}d\theta^{2}+r^{2}\sin^{2}\theta d\phi^{2} \\ \\ dV&= r^{2}\sin\theta dr d \theta d \phi \end{align*} $$