logo

正規分布の平均と分散 📂確率分布論

正規分布の平均と分散

XN(μ,σ2)X \sim N\left( \mu , \sigma^{2} \right) 平面 E(X)=μVar(X)=σ2 E(X) = \mu \\ \Var (X) = \sigma^{2}

導出

戦略:正規分布は、モーメント生成関数が微分しやすいから、直接導くんだ。

正規分布のモーメント生成関数: m(t)=exp(μt+σ2t22),tR m(t) = \exp \left( \mu t + {{ \sigma^{2} t^{2} } \over { 2 }} \right) \qquad , t \in \mathbb{R}


m(t)=(μ+σ2t)exp(μt+σ2t22) m ' (t) = \left( \mu + \sigma^{2} t \right) \exp \left( \mu t + {{ \sigma^{2} t^{2} } \over { 2 }} \right) だからE(X)=m(0)=μE(X) = m ' (0) = \muだし、 m(t)=(0+σ2)exp(μt+σ2t22)+(μ+σ2t)2exp(μt+σ2t22) m '' (t) = \left( 0 + \sigma^{2} \right) \exp \left( \mu t + {{ \sigma^{2} t^{2} } \over { 2 }} \right) + \left( \mu + \sigma^{2} t \right)^{2} \exp \left( \mu t + {{ \sigma^{2} t^{2} } \over { 2 }} \right) だからE(X2)=m(0)=σ2+μ2E \left( X^{2} \right) = m '' (0) = \sigma^{2} + \mu^{2}だ。だから、Var(X)=σ2\Var (X) = \sigma^{2}だ。