自己回帰移動平均モデル
モデル 1
白色雑音 $\left\{ e_{t} \right\}_{t \in \mathbb{N}}$ について $$ Y_{t} := \phi_{1} Y_{t-1} + \phi_{2} Y_{t-2} + \cdots + \phi_{p} Y_{t-p} +e_{t} - \theta_{1} e_{t-1} - \theta_{2} e_{t-2} - \cdots - \theta_{q} e_{t-q} $$ として定義される、$(p,q)$次の自己回帰移動平均過程 $ARMA(p,q)$ と呼ばれる。
説明
アルマモデルは、単純に移動平均過程と自己回帰過程を組み合わせた形をしている。例えば $(1,1)$次であれば、 $$ ARMA(1,1) : Y_{t} = \phi Y_{t-1} + e_{t} - \theta e_{t-1} $$ となる式だ。しかし、アルマモデルはまだモデルとして不足している点があるため、差分を通じて改善されたアリマモデルを主に使用する。もちろん、本質的にはすべてアルマモデルとして結論づけられる。
Cryer. (2008). Time Series Analysis: With Applications in R(2nd Edition): p77. ↩︎