logo

多変数ベクトル関数の連鎖律 📂多変数ベクトル解析

多変数ベクトル関数の連鎖律

定理

二つの関数 $\mathbf{g} : D \subset \mathbb{R}^{m} \to \mathbb{R}^{k}$、$\mathbf{f} : \mathbf{g}(\mathbb{R}^{k}) \subset \mathbb{R}^{k} \to \mathbb{R}^{n}$が微分可能だとしよう。すると、これら二つの関数の合成 $\mathbf{F} = \mathbf{f} \circ \mathbf{g} : \mathbb{R}^{m} \to \mathbb{R}^{n}$も微分可能であり、$\mathbf{F}$の(全)導関数は次を満たす。

$$ \mathbf{F}^{\prime}(\mathbf{x}) = \mathbf{f}^{\prime}\left( \mathbf{g}(\mathbf{x}) \right) \mathbf{g}^{\prime}(\mathbf{x}) $$

解説

これを連鎖律と呼ぶ。

$\mathbf{x} = (x_{1}, \dots, x_{m})$、$\mathbf{g}(\mathbf{x}) = (g_{1}, \dots, g_{k})$、$\mathbf{f}(g_{1}, \dots, g_{k}) = (f_{1}, \dots, f_{n})$とした場合、公式の具体的な形は全導関数の定義から次のような$n \times m$行列である。

$$ \begin{align*} \mathbf{F}^{\prime} (\mathbf{x}) =&\ \begin{bmatrix} \dfrac{\partial f_{1}(\mathbf{g}(\mathbf{x}))}{\partial g_{1}} & \dfrac{\partial f_{1}}{\partial g_{2}} & \cdots & \dfrac{\partial f_{1}}{\partial g_{k}} \\[1em] \dfrac{\partial f_{2}}{\partial g_{1}} & \dfrac{\partial f_{2}}{\partial g_{2}} & \cdots & \dfrac{\partial f_{2}}{\partial g_{k}} \\[1em] \vdots & \vdots & \ddots & \vdots \\[1em] \dfrac{\partial f_{n}}{\partial g_{1}} & \dfrac{\partial f_{n}}{\partial g_{2}} & \cdots & \dfrac{\partial f_{n}}{\partial g_{k}} \end{bmatrix} \begin{bmatrix} \dfrac{\partial g_{1}(\mathbf{x})}{\partial x_{1}} & \dfrac{\partial g_{1}}{\partial x_{2}} & \cdots & \dfrac{\partial g_{1}}{\partial x_{m}} \\[1em] \dfrac{\partial g_{2}}{\partial x_{1}} & \dfrac{\partial g_{2}}{\partial x_{2}} & \cdots & \dfrac{\partial g_{2}}{\partial x_{m}} \\[1em] \vdots & \vdots & \ddots & \vdots \\[1em] \dfrac{\partial g_{k}}{\partial x_{1}} & \dfrac{\partial g_{k}}{\partial x_{2}} & \cdots & \dfrac{\partial g_{k}}{\partial x_{m}} \end{bmatrix} \\[1em] =&\ \begin{bmatrix} \dfrac{\partial f_{1}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{1}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{1}} + \cdots + \dfrac{\partial f_{1}}{\partial g_{k}} \dfrac{\partial g_{k}}{\partial x_{1}} & \dots & \dfrac{\partial f_{1}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{1}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{m}} + \cdots + \dfrac{\partial f_{1}}{\partial g_{k}} \dfrac{\partial g_{k}}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \dfrac{\partial f_{n}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{n}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{1}} + \cdots + \dfrac{\partial f_{n}}{\partial g_{k}} \dfrac{\partial g_{k}}{\partial x_{1}} & \cdots & \dfrac{\partial f_{n}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{n}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{m}} + \cdots + \dfrac{\partial f_{n}}{\partial g_{m}} \dfrac{\partial g_{k}}{\partial x_{m}} \end{bmatrix} \\[1em] =&\ \begin{bmatrix} \displaystyle \sum\limits_{\ell =1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \displaystyle \sum\limits_{\ell=1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \displaystyle \sum\limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \displaystyle \sum\limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \end{bmatrix} \end{align*} $$

アインシュタインの記法で簡単に表すと、$1 \le i \le n$、$1 \le j \le m$に対して

$$ \mathbf{F}^{\prime} = \left[ F_{ij}^{\prime} \right] = \begin{bmatrix} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \end{bmatrix} $$

$$ F_{ij}^{\prime} = \dfrac{\partial f_{i}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{j}} $$

これは最も一般化された形なので、$k, m, n$に従って、さまざまな具体的な公式を得ることができる。

公式

  • ケース 1. $g : \mathbb{R} \to \mathbb{R}$、$f : \mathbb{R} \to \mathbb{R}$、$F = f \circ g : \mathbb{R} \to \mathbb{R}$

    $x \in \mathbb{R}$、$g = g(x)$、$f = f(g(x))$のとき、

    $$ F^{\prime} = \dfrac{d F}{d x} = \dfrac{d f}{d g} \dfrac{d g}{d x} $$

    証明


  • ケース 2. $\mathbf{g} : \mathbb{R} \to \mathbb{R}^{k}$、$f : \mathbb{R}^{k} \to \mathbb{R}$、$F = f \circ \mathbf{g} : \mathbb{R} \to \mathbb{R}$

    $x \in \mathbb{R}$、$\mathbf{g}(x) = (g_{1}, \dots, g_{k})$、$f = f(g_{1}, \dots ,g_{k})$のとき、

    $$ F^{\prime} = \dfrac{d F}{d x} = \sum \limits_{\ell=1}^{k}\dfrac{\partial f}{\partial g_{\ell}} \dfrac{d g_{\ell}}{d x} $$


  • ケース 3. $g : \mathbb{R}^{m} \to \mathbb{R}$、$f : \mathbb{R} \to \mathbb{R}$、$F = f \circ g : \mathbb{R}^{m} \to \mathbb{R}$

    $\mathbf{x} = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n}$、$g = g(\mathbf{x})$、$f = f(g(\mathbf{x}))$のとき、

    $$ F^{\prime} = \dfrac{d F}{d \mathbf{x}} = \begin{bmatrix} \dfrac{d f}{d g} \dfrac{\partial g}{\partial x_{1}} & \dots & \dfrac{d f}{d g} \dfrac{\partial g}{\partial x_{m}} \end{bmatrix} $$

    $$ F_{j}^{\prime} = \dfrac{d f}{d g} \dfrac{\partial g}{\partial x_{j}},\quad 1 \le j \le m $$


  • ケース 4. $\mathbf{g} : \mathbb{R}^{m} \to \mathbb{R}^{k}$、$f : \mathbb{R}^{k} \to \mathbb{R}$、$F = f \circ \mathbf{g} : \mathbb{R}^{m} \to \mathbb{R}$

    $\mathbf{x} = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n}$、$\mathbf{g}(x) = (g_{1}, \dots, g_{k})$、$f = f(g_{1}, \dots, g_{k})$のとき、

    $$ F^{\prime} = \dfrac{d F}{d \mathbf{x}} = \begin{bmatrix} \sum \limits_{\ell=1}^{k} \dfrac{\partial f}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \sum \limits_{\ell=1}^{k} \dfrac{\partial f}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \end{bmatrix} $$

    $$ F_{j}^{\prime} = \sum \limits_{\ell=1}^{k} \dfrac{\partial f}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{j}},\quad 1 \le j \le m $$


  • ケース 5. $g : \mathbb{R} \to \mathbb{R}$、$\mathbf{f} : \mathbb{R} \to \mathbb{R}^{n}$、$\mathbf{F} = \mathbf{f} \circ g : \mathbb{R} \to \mathbb{R}^{n}$

    $x \in \mathbb{R}$、$g = g(x)$、$\mathbf{f}(g(x)) = (f_{1}, \dots, f_{n})$のとき、

    $$ \mathbf{F}^{\prime} = \dfrac{d \mathbf{F}}{d x} = \begin{bmatrix} \dfrac{d f_{1}}{d g} \dfrac{d g}{d x} \\[1em] \vdots \\[1em] \dfrac{d f_{n}}{d g} \dfrac{d g}{d x} \end{bmatrix} $$

    $$ F_{i}^{\prime} = \dfrac{d f_{i}}{d g} \dfrac{d g}{d x},\quad 1\le i \le n $$


  • ケース 6. $\mathbf{g} : \mathbb{R} \to \mathbb{R}^{k}$、$\mathbf{f} : \mathbb{R}^{k} \to \mathbb{R}^{n}$、$\mathbf{F} = \mathbf{f} \circ \mathbf{g} : \mathbb{R} \to \mathbb{R}^{n}$

    $x \in \mathbb{R}$、$\mathbf{g}(x) = (g_{1}, \dots, g_{k})$、$\mathbf{f}(g_{1}, \dots ,g_{k}) = (f_{1}, \dots, f_{n})$のとき、

    $$ \mathbf{F}^{\prime} = \dfrac{d \mathbf{F}}{d x} = \begin{bmatrix} \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{d g_{\ell}}{d x} \\[1em] \vdots \\[1em] \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{d g_{\ell}}{d x} \end{bmatrix} $$

    $$ F_{i}^{\prime} = \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{i}}{\partial g_{\ell}} \dfrac{d g_{\ell}}{d x},\quad 1\le i \le n $$


  • ケース 7. $g : \mathbb{R}^{m} \to \mathbb{R}$、$\mathbf{f} : \mathbb{R} \to \mathbb{R}^{n}$、$\mathbf{F} = \mathbf{f} \circ g : \mathbb{R}^{m} \to \mathbb{R}^{n}$

    $\mathbf{x} = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n}$、$g = g(\mathbf{x})$、$\mathbf{f}(g(\mathbf{x})) = (f_{1}, \dots, f_{n})$のとき、

    $$ \mathbf{F}^{\prime} = \dfrac{d \mathbf{F}}{d \mathbf{x}} = \begin{bmatrix} \dfrac{d f_{1}}{d g} \dfrac{\partial g}{\partial x_{1}} & \dots & \dfrac{d f_{1}}{d g} \dfrac{\partial g}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \dfrac{d f_{n}}{d g} \dfrac{\partial g}{\partial x_{1}} & \dots & \dfrac{d f_{n}}{d g} \dfrac{\partial g}{\partial x_{m}} \end{bmatrix} $$

    $$ F_{ij}^{\prime} = \dfrac{d f_{i}}{d g} \dfrac{\partial g}{\partial x_{j}},\quad 1\le i \le n, 1 \le j \le m $$


  • ケース 8. $\mathbf{g} : \mathbb{R}^{m} \to \mathbb{R}^{k}$、$\mathbf{f} : \mathbb{R}^{k} \to \mathbb{R}^{n}$、$\mathbf{F} = \mathbf{f} \circ \mathbf{g} : \mathbb{R}^{m} \to \mathbb{R}^{n}$

    $\mathbf{x} = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n}$、$g(\mathbf{x}) = (g_{1}, \dots, g_{k})$、$\mathbf{f}(g_{1}, \dots, g_{k}) = (f_{1}, \dots, f_{n})$のとき、

    $$ \mathbf{F}^{\prime} = \dfrac{d \mathbf{F}}{d \mathbf{x}} = \begin{bmatrix} \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \end{bmatrix} $$

    $$ F_{ij}^{\prime} = \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{i}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{j}},\quad 1\le i \le n, 1 \le j \le m $$

証明

一般化された証明を参照。