logo

多変数ベクトル関数の連鎖律 📂多変数ベクトル解析

多変数ベクトル関数の連鎖律

定理

二つの関数 g:DRmRk\mathbf{g} : D \subset \mathbb{R}^{m} \to \mathbb{R}^{k}f:g(Rk)RkRn\mathbf{f} : \mathbf{g}(\mathbb{R}^{k}) \subset \mathbb{R}^{k} \to \mathbb{R}^{n}微分可能だとしよう。すると、これら二つの関数の合成 F=fg:RmRn\mathbf{F} = \mathbf{f} \circ \mathbf{g} : \mathbb{R}^{m} \to \mathbb{R}^{n}も微分可能であり、F\mathbf{F}(全)導関数は次を満たす。

F(x)=f(g(x))g(x) \mathbf{F}^{\prime}(\mathbf{x}) = \mathbf{f}^{\prime}\left( \mathbf{g}(\mathbf{x}) \right) \mathbf{g}^{\prime}(\mathbf{x})

解説

これを連鎖律と呼ぶ。

x=(x1,,xm)\mathbf{x} = (x_{1}, \dots, x_{m})g(x)=(g1,,gk)\mathbf{g}(\mathbf{x}) = (g_{1}, \dots, g_{k})f(g1,,gk)=(f1,,fn)\mathbf{f}(g_{1}, \dots, g_{k}) = (f_{1}, \dots, f_{n})とした場合、公式の具体的な形は全導関数の定義から次のようなn×mn \times m行列である。

F(x)= [f1(g(x))g1f1g2f1gkf2g1f2g2f2gkfng1fng2fngk][g1(x)x1g1x2g1xmg2x1g2x2g2xmgkx1gkx2gkxm]= [f1g1g1x1+f1g2g2x1++f1gkgkx1f1g1g1x1+f1g2g2xm++f1gkgkxmfng1g1x1+fng2g2x1++fngkgkx1fng1g1x1+fng2g2xm++fngmgkxm]= [=1kf1ggx1=1kf1ggxm=1kfnggx1=1kfnggxm] \begin{align*} \mathbf{F}^{\prime} (\mathbf{x}) =&\ \begin{bmatrix} \dfrac{\partial f_{1}(\mathbf{g}(\mathbf{x}))}{\partial g_{1}} & \dfrac{\partial f_{1}}{\partial g_{2}} & \cdots & \dfrac{\partial f_{1}}{\partial g_{k}} \\[1em] \dfrac{\partial f_{2}}{\partial g_{1}} & \dfrac{\partial f_{2}}{\partial g_{2}} & \cdots & \dfrac{\partial f_{2}}{\partial g_{k}} \\[1em] \vdots & \vdots & \ddots & \vdots \\[1em] \dfrac{\partial f_{n}}{\partial g_{1}} & \dfrac{\partial f_{n}}{\partial g_{2}} & \cdots & \dfrac{\partial f_{n}}{\partial g_{k}} \end{bmatrix} \begin{bmatrix} \dfrac{\partial g_{1}(\mathbf{x})}{\partial x_{1}} & \dfrac{\partial g_{1}}{\partial x_{2}} & \cdots & \dfrac{\partial g_{1}}{\partial x_{m}} \\[1em] \dfrac{\partial g_{2}}{\partial x_{1}} & \dfrac{\partial g_{2}}{\partial x_{2}} & \cdots & \dfrac{\partial g_{2}}{\partial x_{m}} \\[1em] \vdots & \vdots & \ddots & \vdots \\[1em] \dfrac{\partial g_{k}}{\partial x_{1}} & \dfrac{\partial g_{k}}{\partial x_{2}} & \cdots & \dfrac{\partial g_{k}}{\partial x_{m}} \end{bmatrix} \\[1em] =&\ \begin{bmatrix} \dfrac{\partial f_{1}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{1}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{1}} + \cdots + \dfrac{\partial f_{1}}{\partial g_{k}} \dfrac{\partial g_{k}}{\partial x_{1}} & \dots & \dfrac{\partial f_{1}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{1}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{m}} + \cdots + \dfrac{\partial f_{1}}{\partial g_{k}} \dfrac{\partial g_{k}}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \dfrac{\partial f_{n}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{n}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{1}} + \cdots + \dfrac{\partial f_{n}}{\partial g_{k}} \dfrac{\partial g_{k}}{\partial x_{1}} & \cdots & \dfrac{\partial f_{n}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{n}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{m}} + \cdots + \dfrac{\partial f_{n}}{\partial g_{m}} \dfrac{\partial g_{k}}{\partial x_{m}} \end{bmatrix} \\[1em] =&\ \begin{bmatrix} \displaystyle \sum\limits_{\ell =1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \displaystyle \sum\limits_{\ell=1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \displaystyle \sum\limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \displaystyle \sum\limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \end{bmatrix} \end{align*}

アインシュタインの記法で簡単に表すと、1in1 \le i \le n1jm1 \le j \le mに対して

F=[Fij]=[f1ggx1f1ggxmfnggx1fnggxm] \mathbf{F}^{\prime} = \left[ F_{ij}^{\prime} \right] = \begin{bmatrix} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \end{bmatrix}

Fij=figgxj F_{ij}^{\prime} = \dfrac{\partial f_{i}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{j}}

これは最も一般化された形なので、k,m,nk, m, nに従って、さまざまな具体的な公式を得ることができる。

公式

  • ケース 1. g:RRg : \mathbb{R} \to \mathbb{R}f:RRf : \mathbb{R} \to \mathbb{R}F=fg:RRF = f \circ g : \mathbb{R} \to \mathbb{R}

    xRx \in \mathbb{R}g=g(x)g = g(x)f=f(g(x))f = f(g(x))のとき、

    F=dFdx=dfdgdgdx F^{\prime} = \dfrac{d F}{d x} = \dfrac{d f}{d g} \dfrac{d g}{d x}

    証明


  • ケース 2. g:RRk\mathbf{g} : \mathbb{R} \to \mathbb{R}^{k}f:RkRf : \mathbb{R}^{k} \to \mathbb{R}F=fg:RRF = f \circ \mathbf{g} : \mathbb{R} \to \mathbb{R}

    xRx \in \mathbb{R}g(x)=(g1,,gk)\mathbf{g}(x) = (g_{1}, \dots, g_{k})f=f(g1,,gk)f = f(g_{1}, \dots ,g_{k})のとき、

    F=dFdx==1kfgdgdx F^{\prime} = \dfrac{d F}{d x} = \sum \limits_{\ell=1}^{k}\dfrac{\partial f}{\partial g_{\ell}} \dfrac{d g_{\ell}}{d x}


  • ケース 3. g:RmRg : \mathbb{R}^{m} \to \mathbb{R}f:RRf : \mathbb{R} \to \mathbb{R}F=fg:RmRF = f \circ g : \mathbb{R}^{m} \to \mathbb{R}

    x=(x1,,xn)Rn\mathbf{x} = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n}g=g(x)g = g(\mathbf{x})f=f(g(x))f = f(g(\mathbf{x}))のとき、

    F=dFdx=[dfdggx1dfdggxm] F^{\prime} = \dfrac{d F}{d \mathbf{x}} = \begin{bmatrix} \dfrac{d f}{d g} \dfrac{\partial g}{\partial x_{1}} & \dots & \dfrac{d f}{d g} \dfrac{\partial g}{\partial x_{m}} \end{bmatrix}

    Fj=dfdggxj,1jm F_{j}^{\prime} = \dfrac{d f}{d g} \dfrac{\partial g}{\partial x_{j}},\quad 1 \le j \le m


  • ケース 4. g:RmRk\mathbf{g} : \mathbb{R}^{m} \to \mathbb{R}^{k}f:RkRf : \mathbb{R}^{k} \to \mathbb{R}F=fg:RmRF = f \circ \mathbf{g} : \mathbb{R}^{m} \to \mathbb{R}

    x=(x1,,xn)Rn\mathbf{x} = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n}g(x)=(g1,,gk)\mathbf{g}(x) = (g_{1}, \dots, g_{k})f=f(g1,,gk)f = f(g_{1}, \dots, g_{k})のとき、

    F=dFdx=[=1kfggx1=1kfggxm] F^{\prime} = \dfrac{d F}{d \mathbf{x}} = \begin{bmatrix} \sum \limits_{\ell=1}^{k} \dfrac{\partial f}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \sum \limits_{\ell=1}^{k} \dfrac{\partial f}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \end{bmatrix}

    Fj==1kfggxj,1jm F_{j}^{\prime} = \sum \limits_{\ell=1}^{k} \dfrac{\partial f}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{j}},\quad 1 \le j \le m


  • ケース 5. g:RRg : \mathbb{R} \to \mathbb{R}f:RRn\mathbf{f} : \mathbb{R} \to \mathbb{R}^{n}F=fg:RRn\mathbf{F} = \mathbf{f} \circ g : \mathbb{R} \to \mathbb{R}^{n}

    xRx \in \mathbb{R}g=g(x)g = g(x)f(g(x))=(f1,,fn)\mathbf{f}(g(x)) = (f_{1}, \dots, f_{n})のとき、

    F=dFdx=[df1dgdgdxdfndgdgdx] \mathbf{F}^{\prime} = \dfrac{d \mathbf{F}}{d x} = \begin{bmatrix} \dfrac{d f_{1}}{d g} \dfrac{d g}{d x} \\[1em] \vdots \\[1em] \dfrac{d f_{n}}{d g} \dfrac{d g}{d x} \end{bmatrix}

    Fi=dfidgdgdx,1in F_{i}^{\prime} = \dfrac{d f_{i}}{d g} \dfrac{d g}{d x},\quad 1\le i \le n


  • ケース 6. g:RRk\mathbf{g} : \mathbb{R} \to \mathbb{R}^{k}f:RkRn\mathbf{f} : \mathbb{R}^{k} \to \mathbb{R}^{n}F=fg:RRn\mathbf{F} = \mathbf{f} \circ \mathbf{g} : \mathbb{R} \to \mathbb{R}^{n}

    xRx \in \mathbb{R}g(x)=(g1,,gk)\mathbf{g}(x) = (g_{1}, \dots, g_{k})f(g1,,gk)=(f1,,fn)\mathbf{f}(g_{1}, \dots ,g_{k}) = (f_{1}, \dots, f_{n})のとき、

    F=dFdx=[=1kf1gdgdx=1kfngdgdx] \mathbf{F}^{\prime} = \dfrac{d \mathbf{F}}{d x} = \begin{bmatrix} \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{d g_{\ell}}{d x} \\[1em] \vdots \\[1em] \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{d g_{\ell}}{d x} \end{bmatrix}

    Fi==1kfigdgdx,1in F_{i}^{\prime} = \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{i}}{\partial g_{\ell}} \dfrac{d g_{\ell}}{d x},\quad 1\le i \le n


  • ケース 7. g:RmRg : \mathbb{R}^{m} \to \mathbb{R}f:RRn\mathbf{f} : \mathbb{R} \to \mathbb{R}^{n}F=fg:RmRn\mathbf{F} = \mathbf{f} \circ g : \mathbb{R}^{m} \to \mathbb{R}^{n}

    x=(x1,,xn)Rn\mathbf{x} = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n}g=g(x)g = g(\mathbf{x})f(g(x))=(f1,,fn)\mathbf{f}(g(\mathbf{x})) = (f_{1}, \dots, f_{n})のとき、

    F=dFdx=[df1dggx1df1dggxmdfndggx1dfndggxm] \mathbf{F}^{\prime} = \dfrac{d \mathbf{F}}{d \mathbf{x}} = \begin{bmatrix} \dfrac{d f_{1}}{d g} \dfrac{\partial g}{\partial x_{1}} & \dots & \dfrac{d f_{1}}{d g} \dfrac{\partial g}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \dfrac{d f_{n}}{d g} \dfrac{\partial g}{\partial x_{1}} & \dots & \dfrac{d f_{n}}{d g} \dfrac{\partial g}{\partial x_{m}} \end{bmatrix}

    Fij=dfidggxj,1in,1jm F_{ij}^{\prime} = \dfrac{d f_{i}}{d g} \dfrac{\partial g}{\partial x_{j}},\quad 1\le i \le n, 1 \le j \le m


  • ケース 8. g:RmRk\mathbf{g} : \mathbb{R}^{m} \to \mathbb{R}^{k}f:RkRn\mathbf{f} : \mathbb{R}^{k} \to \mathbb{R}^{n}F=fg:RmRn\mathbf{F} = \mathbf{f} \circ \mathbf{g} : \mathbb{R}^{m} \to \mathbb{R}^{n}

    x=(x1,,xn)Rn\mathbf{x} = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n}g(x)=(g1,,gk)g(\mathbf{x}) = (g_{1}, \dots, g_{k})f(g1,,gk)=(f1,,fn)\mathbf{f}(g_{1}, \dots, g_{k}) = (f_{1}, \dots, f_{n})のとき、

    F=dFdx=[=1kf1ggx1=1kf1ggxm=1kfnggx1=1kfnggxm] \mathbf{F}^{\prime} = \dfrac{d \mathbf{F}}{d \mathbf{x}} = \begin{bmatrix} \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \end{bmatrix}

    Fij==1kfiggxj,1in,1jm F_{ij}^{\prime} = \sum \limits_{\ell=1}^{k} \dfrac{\partial f_{i}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{j}},\quad 1\le i \le n, 1 \le j \le m

証明

一般化された証明を参照。