logo

交換子の性質 📂量子力学

交換子の性質

定義

二つの演算子A,BA, Bに対して、ABBAAB - BAA,BA, B交換子と定義され、次のように表記される。

[A,B]=ABBA [A,B]=AB-BA

性質

[A,A]=0[A,B]=[B,A][A+B,C]=[A,C]+[B,C][AB,C]=A[B,C]+[A,C]B[A,BC]=B[A,C]+[A,B]C \begin{align} [A, A] &= 0 \\[1em] [A, B] &= -[B, A] \\[1em] [A+B, C] &= [A, C] + [B, C] \\[1em] [AB, C] &= A[B, C]+[A, C]B \\[1em] [A,BC] &= B[A,C]+ [A,B]C \end{align}

説明

量子力学を記述する主な方法が行列だ。ところが、行列は乗算に対して交換法則が成り立たない。だから、A, BA,\ Bという演算子(行列)があるとき、以下のように展開すると一般的には正しくない。

(A+B)2=A2+2AB+B2 (A+B)^{2} = A^{2} + 2AB + B^{2}

正しく展開すると次のとおり。

(A+B)2=A2+AB+BA+B2 (A+B)^{2} = A^{2} + AB + BA + B^{2}

'演算子=行列'と覚えておくことがミスを減らす道だ。上記の性質は交換子を計算するときに便利に使われる。

証明

(1)

[A,A]=AAAA=0 [A, A]=AA-AA=0

(2)

[A,B]=ABBA=(BAAB)=[B,A] [A,B] = AB-BA = -(BA-AB) = -[B,A]

(3)

[A+B,C]=(A+B)CC(A+B)=AC+BCCACB=(ACCA)+(BCCB)=[A,C]+[B,C] \begin{align*} [A+B,C] &= (A+B)C-C(A+B) \\ &= AC+BC-CA-CB \\ &= (AC-CA) + (BC-CB) \\ &= [A,C]+[B,C] \end{align*}

(4)

[AB,C]=(AB)CC(AB)=ABCCAB=(ABCCAB)+(ACBACB)=(ABCACB)+(ACBCAB)=A(BCCB)+(ACCA)B=A[B,C]+[A,C]B \begin{align*} [AB,C] &= (AB)C-C(AB) \\ &= ABC-CAB \\ &= (ABC {\color{blue}-CAB})+(ACB {\color{red}-ACB}) \\ &= (ABC {\color{red}-ACB}) + (ACB {\color{blue}-CAB}) \\ &= A(BC-CB) +(AC-CA)B \\ &= A[B,C] + [A,C]B \end{align*}

(5)

[A,BC]=A(BC)(BC)A=ABCBCA=(ABCBCA)+(BACBAC)=(BACBCA)+(ABCBAC)=B[A,C]+[A,B]C \begin{align*} [A,BC] &= A(BC)-(BC)A \\ &= ABC-BCA \\ &= ({\color{blue}ABC} -BCA)+({\color{red}BAC} -BAC) \\ &= ( {\color{red}BAC}-BCA )+({\color{blue}ABC}-BAC) \\ &= B[A,C] + [A,B]C \end{align*}