logo

確率微分方程式とは? 📂確率微分方程式

確率微分方程式とは?

定義 1

dX(t)=f(t,X(t))dt+g(t,X(t))dWt,t[t0,T],T>0 d X(t) = f \left( t, X(t) \right) dt + g \left( t, X(t) \right) d W_{t} \qquad , t \in \left[ t_{0} , T \right], T > 0

上記の形式の方程式は、確率微分方程式、略してSDEと呼ばれる。ここで、ffggはそれぞれドリフトdriftディフュージョンdiffusionの係数関数と呼ばれる。初期条件X0:=X(t0)X_{0} := X \left( t_{0} \right)に対する積分形は、次のように表される。

X(t)=X0+t0tf(s,X(s))ds+t0tg(s,X(s))dWs X(t) = X_{0} + \int_{t_{0}}^{t} f \left( s, X (s) \right) ds + \int_{t_{0}}^{t} g \left( s, X (s) \right) d W_{s}

説明

dXt=f(t,Xt)dt+g(t,Xt)dWt d X_{t} = f \left( t, X_{t}\right) dt + g \left( t, X_{t} \right) d W_{t}

この形が気にならなければ、伊藤の微積分学をよく勉強しているか、微分方程式をほとんど知らないか、のどちらかだと思う。微分方程式には慣れているがSDEには不慣れな人にとって、自然にgdWtg d W_{t}が目障りになるべきだ。SDEはODEと異なり、このような確率過程が含まれており、モデルに不確実性を加えている。この項を00として考え、つまりgdWt=0g d W_{t} = 0の非決定論的システムとして見れば、次のようになる。 dX(t)=f(t,X(t))dt+g(t,X(t))dWt=f(t,X(t))dt+0=f(t,X(t))dt \begin{align*} d X(t) =& f \left( t, X(t) \right) dt + g \left( t, X(t) \right) d W_{t} \\ =& f \left( t, X(t) \right) dt + 0 \\ =& f \left( t, X(t) \right) dt \end{align*} 両辺をdtdtで割ると dX(t)dt=f(t,X(t)) {{ d X (t) } \over { dt }} = f \left( t, X(t) \right) そのため、私たちがよく知る非自律系の様子を取り戻したことを確認できる。

ドリフト

この説明で、時系列解析のドリフトを思い出すと、係数関数ffをドリフトと呼ぶのはかなり自然である。後ろの項がどうであれ、システム自体をシステムとして扱うことができる原動力はfdtf dtだからだ。

ディフュージョン

それでは、ggを拡散diffusionと呼ぶことは、その役割や性質が広がること、散らばることを自然に連想させる。確率微分方程式では、これは白色雑音の概念を指し、このようなノイズにより伊藤の公式のような独特の結果が生じる。


  1. Panik. (2017). Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: p133. ↩︎