logo

内積空間で定義された内積に関連したノルムの性質 📂ヒルベルト空間

内積空間で定義された内積に関連したノルムの性質

定理1

内積空間 (X,,)\left( X, \langle \cdot,\cdot \rangle \right)が与えられたとしよう。すると自然に:=,\left\| \cdot \right\|:=\sqrt{\left\langle \cdot,\cdot \right\rangle }のようにノルムを定義できて、下の性質が成り立つ。

(a) コーシー-シュワルツ不等式: 任意のx,yX\mathbf{x}, \mathbf{y}\in Xに対して、

x,yxy \left| \langle \mathbf{x},\mathbf{y} \rangle \right| \le \left\| \mathbf{x} \right\| \left\| \mathbf{y} \right\|

(b) 平行四辺形の法則: 任意のx,yX\mathbf{x},\mathbf{y}\in Xに対して、

x+y2+xy2=2(x2+y2) \left\| \mathbf{x} + \mathbf{y} \right\|^{2} + \left\| \mathbf{x} - \mathbf{y} \right\|^{2} = 2 \left( \left\| \mathbf{x} \right\| ^{2}+ \left\| \mathbf{y} \right\| ^{2} \right)

(c) 複素ベクトル空間の偏極恒等式: 複素内積空間XXと任意のx,yX\mathbf{x},\mathbf{y}\in Xに対して、

x,y=14(x+y2xy2+i(x+iy2xiy2)) \langle \mathbf{x},\mathbf{y} \rangle = \frac{1}{4} \Big( \left\| \mathbf{x} + \mathbf{y} \right\|^{2} - \left\| \mathbf{x} - \mathbf{y} \right\|^{2} + i \left( \left\| \mathbf{x} + i\mathbf{y} \right\|^{2} - \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} \right) \Big)

(d) 実ベクトル空間の偏極恒等式: 実内積空間XXと任意のx,yX\mathbf{x},\mathbf{y}\in Xに対して、

x,y=14(x+y2xy2) \langle \mathbf{x},\mathbf{y}\rangle = \frac{1}{4} \left( \left\| \mathbf{x}+\mathbf{y} \right\|^{2} - \left\| \mathbf{x}-\mathbf{y} \right\| ^{2} \right)

(e) ノルム対内積: 任意のxX\mathbf{x} \in Xに対して、

x=sup{x,y:yX,y=1} \left\| \mathbf{x} \right\| =\sup \left\{ \left| \langle \mathbf{x},\mathbf{y} \rangle \right| : \mathbf{y}\in X, \left\| \mathbf{y} \right\| =1 \right\}

証明

(a)

内積空間で、ノルムの定義によればコーシー-シュワルツ不等式は

x,yx,x1/2y,y1/2= xy \begin{align*} \left| \langle \mathbf{x},\mathbf{y}\rangle \right| & \le \langle \mathbf{x},\mathbf{x} \rangle^{1/2} \langle \mathbf{y},\mathbf{y} \rangle ^{1/2} \\ =&\ \left\| \mathbf{x} \right\| \left\| \mathbf{y} \right\| \end{align*}

(b)

x+y2+xy2= x+y,x+y+xy,xy= x,x+x,y+y,x+y,y+x,xx,yy,x+y,y= 2x,x+2y,y= 2(x,x+y,y)= 2(x2+y2) \begin{align*} \left\| \mathbf{x} + \mathbf{y} \right\|^{2} + \left\| \mathbf{x} - \mathbf{y} \right\|^{2} =&\ \langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle + \langle \mathbf{x}-\mathbf{y},\mathbf{x}-\mathbf{y} \rangle \\ =&\ \langle \mathbf{x},\mathbf{x} \rangle + \langle \mathbf{x},\mathbf{y}\rangle + \langle \mathbf{y},\mathbf{x} \rangle + \langle \mathbf{y},\mathbf{y} \rangle \\ & + \langle \mathbf{x},\mathbf{x} \rangle -\langle \mathbf{x},\mathbf{y}\rangle -\langle \mathbf{y},\mathbf{x} \rangle + \langle \mathbf{y},\mathbf{y} \rangle \\ =&\ 2 \langle \mathbf{x},\mathbf{x} \rangle + 2 \langle \mathbf{y},\mathbf{y} \rangle \\ =&\ 2 \left(\langle \mathbf{x},\mathbf{x} \rangle + \langle \mathbf{y},\mathbf{y} \rangle \right) \\ =&\ 2 \left( \left\| \mathbf{x} \right\|^{2} + \left\| \mathbf{y} \right\|^{2} \right) \end{align*}

(c)

証明 (b) を参照すれば、実数部の計算結果を得られる。

x+y2xy2= 2x,y+2y,x \begin{align*} \left\| \mathbf{x} + \mathbf{y} \right\|^{2} -\left\| \mathbf{x} - \mathbf{y} \right\|^{2} =&\ 2 \langle \mathbf{x},\mathbf{y}\rangle + 2 \langle \mathbf{y},\mathbf{x}\rangle \end{align*}

虚数部を計算すると、以下のようになる。

x+iy2= x+iy,x+iy= x,x+x,iy+iy,x+iy,iy= x,xix,y+iy,x+y,y \begin{align*} \left\| \mathbf{x} + i\mathbf{y} \right\|^{2} =&\ \langle \mathbf{x}+i\mathbf{y} , \mathbf{x}+i\mathbf{y} \rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle + \langle \mathbf{x},i\mathbf{y}\rangle + \langle i\mathbf{y},\mathbf{x}\rangle +\langle i\mathbf{y},i\mathbf{y}\rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle -i\langle \mathbf{x},\mathbf{y}\rangle + i\langle \mathbf{y},\mathbf{x}\rangle +\langle \mathbf{y},\mathbf{y} \rangle \end{align*}

そして

xiy2= xiy,xiy= x,xx,iyiy,x+iy,iy= x,x+ix,yiy,x+y,y \begin{align*} \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} =&\ \langle \mathbf{x}-i\mathbf{y} , \mathbf{x}-i\mathbf{y}\rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle - \langle \mathbf{x},i\mathbf{y}\rangle - \langle i\mathbf{y},\mathbf{x}\rangle +\langle i\mathbf{y},i\mathbf{y}\rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle +i\langle \mathbf{x},\mathbf{y}\rangle -i\langle \mathbf{y},\mathbf{x}\rangle +\langle \mathbf{y},\mathbf{y} \rangle \end{align*}

従って

x+iy2xiy2=2ix,y+2iy,x \left\| \mathbf{x} + i\mathbf{y} \right\|^{2} - \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} = -2i \langle \mathbf{x},\mathbf{y} \rangle +2i\langle \mathbf{y},\mathbf{x} \rangle

だから

x+y2xy2+i(x+iy2xiy2)= 2x,y+2y,x+2x,y2y,x= 4x,y \begin{align*} & \left\| \mathbf{x} + \mathbf{y} \right\|^{2} - \left\| \mathbf{x} - \mathbf{y} \right\|^{2} + i \left(\left\| \mathbf{x} + i\mathbf{y} \right\|^{2} - \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} \right) \\ =&\ 2 \langle \mathbf{x},\mathbf{y} \rangle + 2 \langle \mathbf{y},\mathbf{x} \rangle +2\langle \mathbf{x},\mathbf{y} \rangle -2 \langle \mathbf{y},\mathbf{x} \rangle \\ =&\ 4 \langle \mathbf{x},\mathbf{y} \rangle \end{align*}

(d)

x,yR\langle \mathbf{x},\mathbf{y} \rangle \in \mathbb{R}ならば x,y=y,x=y,x\langle \mathbf{x},\mathbf{y} \rangle=\overline{\langle \mathbf{y},\mathbf{x} \rangle}=\langle \mathbf{y},\mathbf{x} \rangleであるので、

x+y2xy2= 2x,y+2y,x= 4x,y \begin{align*} \left\| \mathbf{x} + \mathbf{y} \right\| ^{2} -\left\| \mathbf{x} - \mathbf{y} \right\| ^{2} =&\ 2 \langle \mathbf{x},\mathbf{y}\rangle + 2 \langle \mathbf{y},\mathbf{x}\rangle \\ =&\ 4\langle \mathbf{x},\mathbf{y} \rangle \end{align*}

(e)

コーシー-シュワルツ不等式によれば、

x,yxy \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| \le \left\| \mathbf{x} \right\| \left\| \mathbf{y} \right\|

すると次の式が成立する。

supy=1x,yx \sup \limits_{\left\| \mathbf{y} \right\|=1 } \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| \le \left\| \mathbf{x} \right\|

この時 y=xx\mathbf{y}=\dfrac{\mathbf{x}}{\left\| \mathbf{x} \right\| }y=1\left\| \mathbf{y} \right\| = 1として、

x,y= x,xx= 1xx,x= 1xx2= x \begin{align*} \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| =&\ \left| \left\langle \mathbf{x}, \frac{\mathbf{x}}{\left\| \mathbf{x} \right\| } \right\rangle \right| \\ =&\ \frac{1}{\left\| \mathbf{x} \right\| } \left\langle \mathbf{x},\mathbf{x} \right\rangle \\ =&\ \frac{1}{\left\| \mathbf{x} \right\| }\left\| \mathbf{x} \right\|^{2} \\ =&\ \left\| \mathbf{x} \right\| \end{align*}

が成立する。従って、

supy=1x,y=x \sup \limits_{\left\| \mathbf{y} \right\|=1 } \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| = \left\| \mathbf{x} \right\|


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p64-65 ↩︎