logo

直交座標系における速度と加速度 📂古典力学

直交座標系における速度と加速度

直交座標系での速度と加速度

r=xx^+yy^+zz^v=r˙=x˙x^+y˙y^+z˙z^a=v˙=r¨=x¨x^+y¨y^+z¨z^ \begin{align*} \mathbf{r} &= x \hat{\mathbf{x}} + y \hat{\mathbf{y}} + z \hat{\mathbf{z}} \\ \mathbf{v} &= \dot{\mathbf{r}} = \dot{x} \hat{\mathbf{x}} + \dot{y} \hat{\mathbf{y}} + \dot{z} \hat{\mathbf{z}} \\ \mathbf{a} &= \dot{\mathbf{v}} = \ddot{\mathbf{r}} = \ddot{x} \hat{\mathbf{x}} + \ddot{y} \hat{\mathbf{y}} +\ddot{z}\hat{\mathbf{z}} \end{align*}

導出

597006320.png

直交座標系で速度と加速度を求めるのはとても簡単だ。

速度

r\mathbf{r}ttで微分すると次のようになる。

v=ddt(xx^+yy^+zz^)=x˙x^+xx^˙+y˙y^+yy^˙+z˙z^+zz^˙ \mathbf{v}=\frac{d}{dt}(x\hat{\mathbf{x}} +y\hat{\mathbf{y}}+z\hat{\mathbf{z}})=\dot{x} \hat{\mathbf{x}} + x\dot{\hat{\mathbf{x}}}+\dot{y} \hat{\mathbf{y}} + y\dot{\hat{\mathbf{y}}} +\dot{z} \hat{\mathbf{z}} + z\dot{\hat{\mathbf{z}}}

直交座標系の単位ベクトルは、時間の変化に無関係なのでx^˙=y^˙=z^˙=0\dot{\hat{\mathbf{x}}}=\dot{\hat{\mathbf{y}}}=\dot{\hat{\mathbf{z}}} = 0であり、したがって次のようになる。

v=x˙x^+y˙y^+z˙z^ \mathbf{v} = \dot{x} \hat{\mathbf{x}} + \dot{y} \hat{\mathbf{y}} + \dot{z} \hat{\mathbf{z}}

ちなみに、r˙\dot{r}は「アルドット」と読む。物理学で文字の上の点は、時間に対する微分を意味する。

加速度

v\mathbf{v}ttで微分すると次のようになる。

a=ddt(x˙x^+y˙y^+z˙z^)=x¨x^+y¨y^+z¨z^ \mathbf{a}=\frac{d}{dt}(\dot{x} \hat{\mathbf{x}}+\dot{y} \hat{\mathbf{y}}+\dot{z} \hat{\mathbf{z}})=\ddot{x} \hat{\mathbf{x}}+\ddot{y} \hat{\mathbf{y}}+\ddot{z}\hat{\mathbf{z}}

併せて見る