logo

Momentum operator in quantum mechanics 📂Quantum Mechanics

Momentum operator in quantum mechanics

Definition

In quantum mechanics, the momentum operator is as follows:

P=ix=ix P = \frac{\hbar}{\i}\frac{\partial}{\partial x} = -\i\hbar \dfrac{\partial }{\partial x}

Description

The momentum operator is a function that allows one to calculate the momentum of a wave function. When a wave function with momentum p=kp = \hbar k is substituted, it satisfies the following equation.

Pψ=pψ P \psi = p \psi

In the case of dimensions higher than two, the momentum operator in each direction is as follows:

Px=ix,Py=iy,Pz=iz P_{x} = -\i\hbar\frac{\partial}{\partial x},\quad P_{y} = -\i\hbar\frac{\partial}{\partial y},\quad P_{z} = -\i\hbar\frac{\partial}{\partial z}

Therefore, the momentum operator in three dimensions is,

P=i P = -\i\hbar\nabla

Derivation

Let’s consider the one-dimensional case. The operator we seek is one that satisfies the following equation for a wave function with momentum pp.

Pψ=pψ P \psi = p \psi

In quantum mechanics, since the momentum and energy are p=kp = \hbar k respectively, the wave function is,

ψ(x,t)=ei(pxωt)/ \psi (x,t) = e^{i(px - \hbar \omega t)/\hbar}

To obtain the momentum pp from here, we differentiate using xx.

xei(pxωt)/=ipei(pxωt)/ \dfrac{\partial }{\partial x} e^{\i(px - \hbar \omega t)/\hbar} = \dfrac{\i}{\hbar} p e^{\i(px - \hbar \omega t)/\hbar}

Therefore,

ixei(pxωt)/=pei(pxωt)/    ixψ(x,t)=pψ(x,t)    P=ix \begin{align*} && \dfrac{\hbar}{\i}\dfrac{\partial }{\partial x} e^{\i(px - \hbar \omega t)/\hbar} &= p e^{\i(px - \hbar \omega t)/\hbar} \\ \implies && \dfrac{\hbar}{\i}\dfrac{\partial }{\partial x} \psi (x, t) &= p \psi (x, t) \\ \implies && P = \dfrac{\hbar}{\i}\dfrac{\partial }{\partial x} \end{align*}