logo

Proof of the Third Isomorphism Theorem 📂Abstract Algebra

Proof of the Third Isomorphism Theorem

Theorem 1

Let G,GG,G' be a group.

  • First Isomorphism Theorem: If there exists a homomorphism ϕ:GG\phi : G \to G' then G/ker(ϕ)ϕ(G) G / \ker ( \phi ) \simeq \phi (G)
  • Second Isomorphism Theorem: If HGH \le G and NGN \triangleleft G then (HN)/NH/(HN) (HN) / N \simeq H / (H \cap N)
  • Third Isomorphism Theorem: If H,KGH , K \triangleleft G and KHK \leq H then G/H(G/K)/(H/K) G/H \simeq (G/K) / (H/K)

The Isomorphism Theorem refers to these three independent theorems proven by the algebraist Emmy Noether.


Description

The Isomorphism Theorem, proven by the algebraist Emmy Noether, refers to these three independent theorems. Modifying the representation of the quotient group in the Third Isomorphism Theorem slightly gives GHGKHK {{G} \over {H}} \simeq {{ {{G} \over {K}} } \over { {{H} \over {K}} }} This is similar to multiplying both numerator and denominator by 1K\displaystyle {{1} \over {K}}.

Proof

The proof of the Second Isomorphism Theorem is almost identical, differing only in the definition of ϕ\phi and showing that HH is the kernel. Let’s define ϕ:G(G/K)/(H/K)\phi : G \to (G/K) / (H/K) as ϕ(g)=gK(H/K)\phi (g) = gK (H / K).

After showing that ϕ\phi is a canonical mapping and that HH is kerϕ\ker \phi, using the First Isomorphism Theorem completes the proof.


Part 1. ϕ\phi is a function.

For x,yGx,y \in G x=y    xK(H/K)=yK(H/K)    ϕ(x)=ϕ(y) \begin{align*} && x= y \\ \implies& x K (H / K) = y K (H / K) \\ \implies& \phi (x) = \phi (y) \end{align*} thus, ϕ\phi is a function.


Part 2. ϕ\phi is a homomorphism.

For x,yGx,y \in G ϕ(xy)=(xyK)(H/K)=[(aK)(bK)](H/K)=[(aK)(H/K)][(bK)(H/K)]=ϕ(x)ϕ(y) \begin{align*} \phi ( xy ) =& (xyK) ( H / K) \\ =& [ ( a K ) ( b K) ] ( H / K) \\ =& [ (aK) (H / K)] [ (bK) (H / K) ] \\ =& \phi ( x ) \phi ( y ) \end{align*} thus, ϕ\phi is a homomorphism.


Part 3. ϕ\phi is surjective.

For every gK(H/N)(G/K)/(H/K)gK (H / N) \in (G / K) / (H / K ) ϕ(g)=gK(H/K) \phi ( g ) = g K ( H / K ) there exists some gGg \in G satisfying this, so ϕ\phi is surjective.


Part 4. H=ker(ϕ)H = \ker ( \phi )

If ()( \subset ) hHh \in H then ϕ(h)=hK(H/K)=K(H/K)\phi (h) = h K ( H / K ) = K ( H / K ) hence hker(ϕ) h \in \ker ( \phi )

If ()( \supset ) hker(ϕ)h \in \ker ( \phi) then from ϕ(h)=K(H/K)=hK(H/K)\phi (h) = K ( H / K ) = hK (H / K ) hK=K(H/K)hK = K \in ( H / K ) hence hH h \in H


Part 5.

First Isomorphism Theorem: If homomorphism ϕ:GG\phi : G \to G' exists, then G/ker(ϕ)ϕ(G)G / \ker ( \phi ) \simeq \phi (G)

Since ϕ:G(G/K)/(H/K)\phi : G \to (G/K) / (H/K) is a homomorphism and surjective ϕ(G)=(G/K)/(H/K) \phi ( G ) = (G/K) / (H/K) Meanwhile, because of H=ker(ϕ)H = \ker ( \phi ), by the First Isomorphism Theorem, the following holds. G/H(G/K)/(H/K) G/H \simeq (G/K) / (H/K)


  1. Fraleigh. (2003). A first course in abstract algebra(7th Edition): p307~309. ↩︎