logo

Laplace Transform of the First Order Derivative 📂Odinary Differential Equations

Laplace Transform of the First Order Derivative

Theorem1

Let’s assume the following two conditions.

  1. Let function f(t)f(t) be continuous on interval 0tA0 \le t \le A, and let its first derivative f(t)f^{\prime}(t) be piecewise continuous.
  2. There exists real numbers aa and positive numbers KK, MM such that when tMt \ge M, it satisfies f(t)Keat|f(t)| \le Ke^{at}.

Then, the first derivative of ff’s Laplace transform L{f(t)}\mathcal{L} \left\{ f^{\prime}(t) \right\} exists when s>as>a and its value is as follows.

L{f(t)}=sL{f(t)}f(0) \mathcal {L} \left\{ f^{\prime}(t) \right\} = s\mathcal {L} \left\{ f(t) \right\} -f(0)

Explanation

To put the conditions simply, ‘The Laplace transform of f(t)f(t) exists and f(t)f^{\prime}(t) is piecewise continuous’.

Proof

If limA0Aestf(t)dt\displaystyle \lim_{A \to \infty} \int _{0} ^A e^{-st}f^{\prime}(t)dt converges, then the proof is complete. Since it is stated that ff^{\prime} is piecewise continuous within the interval, let’s say there are kk points of discontinuity. And let’s name these points of discontinuity t1t_{1}, t2t_2, \cdots, tkt_{k}. If we divide the integration by these points of discontinuity, it would look as follows.

0Aestf(t)dt=0t1estf(t)dt+t1t2estf(t)dt++tkAestf(t)dt \int _{0} ^A e^{-st}f^{\prime}(t)dt = \int _{0} ^{t_{1}} e^{-st}f^{\prime}(t)dt + \int _{t_{1}} ^{t_2} e^{-st}f^{\prime}(t)dt + \cdots + \int _{t_{k}} ^A e^{-st}f^{\prime}(t)dt

Now, let’s perform integration by parts for each term. Separating the definite and indefinite integrals, we organize them as follows.

0Aestf(t)dt=[estf(t)]0t1+[estf(t)]t1t2++[estf(t)]tkA+s[0t1estf(t)dt+t1t2estf(t)dt++tkAestf(t)dt] \begin{align*} \int_{0}^A e^{-st}f^{\prime}(t)dt &= \left[ e^{-st}f(t)\right]_{0}^{t_{1}} + \left[ e^{-st}f(t)\right]_{t_{1}}^{t_2} + \cdots + \left[ e^{-st}f(t)\right]_{t_{k}}^{A} \\ &\quad +s \left[ \int _{0} ^{t_{1}} e^{-st}f(t)dt + \int _{t_{1}} ^{t_2} e^{-st}f(t)dt + \cdots + \int _{t_{k}} ^A e^{-st}f(t)dt \right] \end{align*}

Calculating the definite integral part and combining the integral parts, we get the following.

[est1f(t1)es0f(0)]+[est2f(t2)est1f(t1)]++[esAf(A)estkf(tk)]+s0Aestf(t)dt=esAf(A)es0f(0)+s0Aestf(t)dt \begin{align*} &\left[ e^{-st_{1}}f(t_{1}) - e^{-s0}f(0) \right] + \left[ e^{-st_2}f(t_2) - e^{-st_{1}}f(t_{1}) \right] + \cdots + \left[ e^{-sA}f(A) - e^{-st_{k}}f(t_{k}) \right] + s \int _{0} ^{A} e^{-st}f(t)dt \\ &= e^{-sA}f(A) - e^{-s0}f(0) + s \int _{0} ^{A} e^{-st}f(t)dt \end{align*}

As assumed, since the Laplace transform of f(t)f(t) exists,

0Aestf(t)dt=esAf(A)f(0)+sL{f(t)} \int _{0} ^A e^{-st}f^{\prime}(t)dt = e^{-sA}f(A) - f(0) + s \mathcal{L} \left\{ f(t) \right\}

Now, to check if limAesAf(A)\displaystyle \lim_{A \to \infty} e^{-sA}f(A) converges, by demonstrating that the Laplace transform of f(t)f^{\prime}(t) exists. By Condition 2., it follows that f(A)KeaA|f(A)| \le Ke^{aA}. Multiplying both sides by esAe^{-sA},

esAf(A)Ke(sa)A |e^{-sA}f(A)| \le Ke^{-(s-a)A}

Then, taking the limit limA\lim \limits_{A \to \infty} on both sides, when s>as>a, the right-hand side converges to 00. Therefore, the left-hand side also converges to 00. Thus,

0estf(t)dt=limA0Aestf(t)dt=limAesAf(A)f(0)+sL{f(t)}=sL{f(t)}f(0)=sF(s)f(0) \begin{align*} \int_{0}^\infty e^{-st}f^{\prime}(t)dt &= \lim_{A \to \infty} \int _{0} ^A e^{-st}f^{\prime}(t)dt \\ &= \lim_{A \to \infty} e^{-sA}f(A) - f(0) + s \mathcal{L} \left\{ f(t) \right\} \\ &= s \mathcal{L} \left\{ f(t) \right\} -f(0) \\ &= s F(s) -f(0) \end{align*}

See Also


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p248-249 ↩︎