logo

Ito's Formula 📂Stochastic Differential Equations

Ito's Formula

Theorem 1

Given an Itô process {Xt}t0\left\{ X_{t} \right\}_{t \ge 0}, dXt=udt+vdWt d X_{t} = u dt + v d W_{t} for a function V(t,Xt)=VC2([0,)×R)V \left( t, X_{t} \right) = V \in C^{2} \left( [0,\infty) \times \mathbb{R} \right), let Yt:=V(t,Xt)Y_{t} := V \left( t, X_{t} \right), then {Yt}\left\{ Y_{t} \right\} is also an Itô process and the following holds: dYt=Vtdt+VxdXt+12Vxx(dXt)2=(Vt+Vxu+12Vxxv2)dt+VxvdWt \begin{align*} d Y_{t} =& V_{t} dt + V_{x} d X_{t} + {{ 1 } \over { 2 }} V_{xx} \left( d X_{t} \right)^{2} \\ =& \left( V_{t} + V_{x} u + {{ 1 } \over { 2 }} V_{xx} v^{2} \right) dt + V_{x} v d W_{t} \end{align*}


  • C2C^{2} is a class of functions that are twice differentiable and their derivatives are continuous.
  • Vt=Vt\displaystyle V_{t} = {{ \partial V } \over { \partial t }}, Vx=VXt\displaystyle V_{x} = {{ \partial V } \over { \partial X_{t} }}, and Vxx=2VXt2\displaystyle V_{xx} = {{ \partial^{2} V } \over { \partial X_{t}^{2} }}.
  • (dXt)2=dXtdXt\left( d X_{t} \right)^{2} = d X_{t} \cdot d X_{t} is calculated according to the following Itô multiplication table. (dt)2=0dtdWt=0dWtdt=0(dWt)2=dt \begin{align*} \left( dt \right)^{2} =& 0 \\ dt d W_{t} =& 0 \\ d W_{t} dt =& 0 \\ \left( d W_{t} \right)^{2} =& dt \end{align*} Therefore, (dXt)2=(udt+vdWt)(udt+vdWt)=u2(dt)2+2uvdtdWt+v2(dWt)2=u20+20+v2dt=v2dt \begin{align*} \left( d X_{t} \right)^{2} =& \left( u dt + v d W_{t} \right) \left( u dt + v d W_{t} \right) \\ =& u^{2} \left( dt \right)^{2} + 2 uv dt d W_{t} + v^{2} \left( d W_{t} \right)^ {2} \\ =& u^{2} \cdot 0 + 2 \cdot 0 + v^{2} dt \\ =& v^{2} dt \end{align*} is obtained.

Explanation

The Itô formula is also known as the Itô lemma or Itô chain rule and is a crucial theorem used throughout stochastic differential equations. Because it frequently appears in almost all calculations, it certainly merits being called a chain rule.

The proof is omitted here, but simply applies the multivariable Taylor theorem and disregards higher-order terms.

Example

Integrating a Wiener process by a Wiener process is intuitively difficult to understand. Formally, one might naturally expect a result like 0tWsdWs=12Wt2\displaystyle \int_{0}^{t} W_{s} d W_{s} = {{ 1 } \over { 2 }} W_{t}^{2}, similar to Riemann integration, but let’s calculate and see if this is the case.

Before using the Itô formula, set the given Itô process to u=0u = 0, v=1v = 1 such that dXt=0dt+1dWt d X_{t} = 0 dt + 1 d W_{t} then Xt=WtX_{t} = W_{t}. Here, if we let Yt:=V(t,Xt)=Xt22\displaystyle Y_{t} := V \left( t , X_{t} \right) = {{ X_{t}^{2} } \over { 2 }}, Vt=t(12Wt2)=0Vx=Wt(12Wt2)=WtVxx=2Wt2(12Wt2)=WtWt=1 \begin{align*} V_{t} =& {{ \partial } \over { \partial t }} \left( {{ 1 } \over { 2 }} W_{t}^{2} \right) = 0 \\ V_{x} =& {{ \partial } \over { \partial W_{t} }} \left( {{ 1 } \over { 2 }} W_{t}^{2} \right) = W_{t} \\ V_{xx} =& {{ \partial^{2} } \over { \partial W_{t}^{2} }} \left( {{ 1 } \over { 2 }} W_{t}^{2} \right) = {{ \partial } \over { \partial W_{t} }} W_{t} = 1 \end{align*} then from u=0u = 0, v=1v = 1, d(Wt22)=(Vt+Vxu+12Vxxv2)dt+VxvdWt=(0+Wt0+12112)dt+Wt1dWt=12dt+WtdWt \begin{align*} d \left( {{ W_{t}^{2} } \over { 2 }} \right) =& \left( V_{t} + V_{x} u + {{ 1 } \over { 2 }} V_{xx} v^{2} \right) dt + V_{x} v d W_{t} \\ =& \left( 0 + W_{t} \cdot 0 + {{ 1 } \over { 2 }} \cdot 1 \cdot 1^{2} \right) dt + W_{t} \cdot 1 \cdot d W_{t} \\ =& {{ 1 } \over { 2 }} dt + W_{t} d W_{t} \end{align*} converting the differential form to the integral form yields Wt22=12t+0tWsdWs {{ W_{t}^{2} } \over { 2 }} = {{ 1 } \over { 2 }} t + \int_{0}^{t} W_{s} d W_{s} Summarizing gives the following. 0tWsdWs=12(Wt2t) \int_{0}^{t} W_{s} d W_{s} = {{ 1 } \over { 2 }} \left( W_{t}^{2} - t \right) At first glance, the presence of the 11th term t/2-t /2, which was not in Riemann integration, might seem messy and inconvenient. However, considering taking the expectation, t=Var(Wt)=E(Wt2)02 t = \operatorname{Var} \left( W_{t} \right) = E \left( W_{t}^{2} \right) - 0^{2} thus it disappears neatly as E(0tWsdWs)=12(tt)=0 E \left( \int_{0}^{t} W_{s} d W_{s} \right) = {{ 1 } \over { 2 }} \left( t - t \right) = 0 . The 11th term is not just garbage generated due to a difference in calculation methods but has its own meaningful existence. If one concurs that the expectation when integrating a Wiener process by a Wiener process should be 00, then one can intuitively accept the above conclusion.

Stochastic Integration 2

Let a<ba < b and cc be a constant and let t>0t > 0.

0tdWs=WtabcdWs=c[WbWa] \begin{align*} \int_{0}^{t} d W_{s} =& W_{t} \\ \int_{a}^{b} c d W_{s} =& c \left[ W_{b} - W_{a} \right] \end{align*}

The above two cases yield the same results as ordinary Riemann integration, but the following yields a unique result only seen in Itô integration.

0tWsdWs=12Wt212tabWsdWs=12[Wb2Wa2]12(ba)0tsdWs=tWt0tWsds=(t1)Wt0tWs2dWs=13Wt30tWsds0teWsdWs=eWt1120teWsds0tWteWsdWs=1+WteWteWt120teWs(1+Ws)dWs0tsWsdWs=t2(Wt2t2)120tWs2ds0t(Ws2s)dWs=13Wt3tWt0tes/2+WsdWs=et/2+Wt10tsinWsdWs=1cosWt120tcosWsds0tcosWsdWs=sinWt+120tsinWsds \begin{align*} \int_{0}^{t} W_{s} d W_{s} =& {{ 1 } \over { 2 }} W_{t}^{2} - {{ 1 } \over { 2 }} t \\ \int_{a}^{b} W_{s} d W_{s} =& {{ 1 } \over { 2 }} \left[ W_{b}^{2} - W_{a}^{2} \right] - {{ 1 } \over { 2 }} (b-a) \\ \int_{0}^{t} s d W_{s} =& t W_{t} - \int_{0}^{t} W_{s} ds = (t-1) W_{t} \\ \int_{0}^{t} W_{s}^{2} d W_{s} =& {{ 1 } \over { 3 }} W_{t}^{3} - \int_{0}^{t} W_{s} ds \\ \int_{0}^{t} e^{W_{s}} d W_{s} =& e^{W_{t}} - 1 - {{ 1 } \over { 2 }} \int_{0}^{t} e^{W_{s}} ds \\ \int_{0}^{t} W_{t} e^{W_{s}} d W_{s} =& 1 + W_{t} e^{W_{t}} - e^{W_{t}} - {{ 1 } \over { 2 }} \int_{0}^{t} e^{W_{s}} \left( 1 + W_{s} \right) d W_{s} \\ \int_{0}^{t} s W_{s} d W_{s} =& {{ t } \over { 2 }} \left( W_{t}^{2} - {{ t } \over { 2 }} \right) - {{ 1 } \over { 2 }} \int_{0}^{t} W_{s}^{2} ds \\ \int_{0}^{t} \left( W_{s}^{2} - s \right) d W_{s} =& {{ 1 } \over { 3 }} W_{t}^{3} - t W_{t} \\ \int_{0}^{t} e^{-s/2 + W_{s}} d W_{s} =& e^{-t/2 + W_{t}} - 1 \\ \int_{0}^{t} \sin W_{s} d W_{s} =& 1 - \cos W_{t} - {{ 1 } \over { 2 }} \int_{0}^{t} \cos W_{s} ds \\ \int_{0}^{t} \cos W_{s} d W_{s} =& \sin W_{t} + {{ 1 } \over { 2 }} \int_{0}^{t} \sin W_{s} ds \end{align*}

Especially regarding the expectation and variance, the following equations are known.

E(0tdWs)=0E(0tWsdWs)=0Var(0tWsdWs)=t22 \begin{align*} E \left( \int_{0}^{t} d W_{s} \right) =& 0 \\ E \left( \int_{0}^{t} W_{s} d W_{s} \right) =& 0 \\ \operatorname{Var} \left( \int_{0}^{t} W_{s} d W_{s} \right) =& {{ t^{2} } \over { 2 }} \end{align*}


  1. Øksendal. (2003). Stochastic Differential Equations: An Introduction with Applications: p48. ↩︎

  2. Panik. (2017). Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: p125. ↩︎