logo

3차 방정식의 근의 공식 📂추상대수

3차 방정식의 근의 공식

공식

3차 방정식 t3+pt+q=0t^{3}+pt+q = 0의 해는 다음과 같다.

{t1=u1+v1=q2+q24+p3273+q2q24+p3273t2=u2+v3=q2+q24+p3273ω+q2q24+p3273ω2t3=u3+v2=q2+q24+p3273ω2+q2q24+p3273ω \begin{cases} t_{1}=u_{1}+v_{1}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \\ t_{2}=u_{2}+v_{3}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega^{2} \\ t_{3}=u_{3}+v_{2}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega^{2}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega\end{cases}

이때 ω=ei23π\omega = e^{i\frac{2}{3}\pi}이다.

증명

카르다노 방식

3차 방정식 ax3+bx2+cx+d=0(a0)ax^{3}+bx^{2}+cx+d=0(a\ne0)가 주어졌다고 하자. 풀이를 간단하게 하기 위해, 일반성을 잃지 않고 아래와 같이 나타내자.

x3+ax2+bx+c=0 \begin{equation} x^{3}+ax^{2} +bx+c=0 \end{equation}

2차항을 없애주기 위해 x=ta3x=t-{\textstyle \frac{a}{3}}으로 치환하자. 그러면 다음과 같다.

(ta3)3+a(ta3)2+b(ta3)+c=0    (t3at2+a23ta327)+(at22a23t+a39)+(btab3)+c=0    t3+(a232a23+b)t+(a327+a39ab3+c)=0    t3+(ba23)t+(2a327ab3+c)=0 \begin{align*} &&\left( t- \frac{a}{3}\right)^{3}+a\left( t-\frac{a}{3} \right)^{2}+b\left( t-\frac{a}{3} \right) + c &=0 \\ \implies && \left( t^{3}-\cancel{at^{2}}+\frac{a^{2}}{3}t-\frac{a^{3}}{27} \right)+\left(\cancel{at^{2}}-\frac{2a^{2}}{3}t + \frac{a^{3}}{9}\right) + \left( bt-\frac{ab}{3} \right) +c &= 0 \\ \implies && t^{3}+\left( \frac{a^{2}}{3} -\frac{2a^{2}}{3}+b \right)t +\left( -\frac{a^{3}}{27}+\frac{a^{3}}{9}-\frac{ab}{3}+c \right)&=0 \\ \implies && t^{3}+\left( b- \frac{a^{2}}{3} \right)t +\left( \frac{2a^{3}}{27}-\frac{ab}{3}+c \right)&=0 \end{align*}

여기서 다시 식을 간단하게 하기 위해서 p=ba23p=b-\frac{a^{2}}{3}, q=2a327ab3+cq=\frac{2a^{3}}{27}-\frac{ab}{3}+c라고 두면 위 식은 아래와 같다.

t3+pt+q=0 \begin{equation} t^{3}+pt+q = 0 \end{equation}

여기서 한 번 더 t=u+vt=u+v로 치환하면 위 식은 아래와 같다.

(u+v)3+p(u+v)+q=0 \begin{equation} (u+v)^{3}+p(u+v)+q=0 \end{equation}

또한 곱셈 공식에 의해 다음의 식이 성립한다.

(u+v)3=u3+3u2v+3uv2+v2=u3+v3+3uv(u+v) (u+v)^{3}=u^{3}+3u^{2}v+3uv^{2}+v^{2}=u^{3}+v^{3}+3uv(u+v)

위 식의 우변을 모두 좌변으로 이항하면 아래의 식을 얻는다.

(u+v)33uv(u+v)(u3+v3)=0 \begin{equation} (u+v)^{3} - 3uv(u+v) - (u^{3}+v^{3})=0 \end{equation}

(3)(3)(4)(4)를 비교해보면 (3)(3)을 푸는 것은 p=3uvp=-3uv, q=(u3+v3)q=-(u^{3}+v^{3})를 만족하는 uu, vv를 찾는 것과 같다는 것을 알 수있다. 두 식을 uu, vv에 대해서 적어보면 다음과 같다.

u3v3=p327u3+v3=q \begin{align*} u^{3}v^{3} &= -\frac{p^{3}}{27} \\ u^{3}+v^{3} &= -q \end{align*}

이때 2차 방정식의 근과 계수의 관계를 생각해보면 u3u^{3}, v3v^{3}는 아래의 2차 방정식의 두 근인 것을 알 수 있다.

X2+qXp327=0 X^{2} +qX -\frac{p^{3}}{27}=0

그러면 근의 공식에 의해 다음의 식이 성립한다.

X1=u3=q+q2+4p3272=q2+q24+p327X2=v3=qq2+4p3272=q2q24+p327 \begin{equation} \begin{aligned} X_{1}&=u^{3}=\frac{-q+\sqrt{q^{2}+\frac{4p^{3}}{27}}}{2}=-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}} \\ X_{2}&= v^{3}=\frac{-q-\sqrt{q^{2}+\frac{4p^{3}}{27}}}{2}=-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}} \end{aligned} \end{equation}

이 때 임의의 실수 α\alpha에 대해서 z3=αz^{3}=\alpha를 만족하는 세 허근은 아래와 같다.

z1=α3andz2=α3ωandz3=α3ω2 z_{1}=\sqrt[3]{\alpha} \quad \text{and} \quad z_{2}=\sqrt[3]{\alpha}\omega \quad \text{and} \quad z_{3}=\sqrt[3]{\alpha}\omega^{2}

이때 ω\omegaω3=1\omega^{3}=1을 만족하는 복소수이며 구체적으로는 ω=ei23π=cos(23π)+isin(23π)\omega=e^{i\frac{2}{3}\pi}=\cos (\frac{2}{3}\pi)+i\sin (\frac{2}{3}\pi)이다. 따라서 (5)(5)를 만족하는 u,vu, v는 다음과 같다.

{u1=q2+q24+p3273u2=q2+q24+p3273ωu3=q2+q24+p3273ω2and{v1=q2q24+p3273v2=q2q24+p3273ωv3=q2q24+p3273ω2 \begin{cases} u_{1}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \\ u_{2}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega \\ u_{3}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega^{2}\end{cases}\quad \text{and} \quad \begin{cases} v_{1}=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \\ v_{2}=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega \\ v_{3}=\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega^{2}\end{cases}

그런데 p=uvp=-uv는 실수 이므로 위 조합 중에서 곱해서 실수가 되는 조합만이 해이다. 따라서 해는 아래와 같다.

{t1=u1+v1=q2+q24+p3273+q2q24+p3273t2=u2+v3=q2+q24+p3273ω+q2q24+p3273ω2t3=u3+v2=q2+q24+p3273ω2+q2q24+p3273ω \begin{cases} t_{1}=u_{1}+v_{1}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}} \\ t_{2}=u_{2}+v_{3}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega^{2} \\ t_{3}=u_{3}+v_{2}=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega^{2}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}\omega\end{cases}

모든 3차 방정식은 치환을 통해 (2)(2)와 같이 2차항이 없는 꼴로 나타낼 수 있으므로 위의 공식 만으로도 충분하다. (1)(1)에 대한 공식으로 표현하면 아래와 같다.

{x1=12(2a327ab3+c)+14(2a327ab3+c)2+127(ba23)33+12(2a327ab3+c)14(2a327ab3+c)2+127(ba23)33a3x2=12(2a327ab3+c)+14(2a327ab3+c)2+127(ba23)33ω+12(2a327ab3+c)14(2a327ab3+c)2+127(ba23)33ω2a3x3=12(2a327ab3+c)+14(2a327ab3+c)2+127(ba23)33ω2+12(2a327ab3+c)14(2a327ab3+c)2+127(ba23)33ωa3 \begin{cases} x_{1}=\sqrt[3]{-\frac{1}{2}\left(\frac{2a^{3}}{27}-\frac{ab}{3}+c \right)+\sqrt{\frac{1}{4}\left( \frac{2a^{3}}{27}-\frac{ab}{3}+c \right)^{2}+\frac{1}{27}\left(b-\frac{a^{2}}{3} \right)^{3}}}+\sqrt[3]{-\frac{1}{2}\left(\frac{2a^{3}}{27}-\frac{ab}{3}+c \right)-\sqrt{\frac{1}{4}\left( \frac{2a^{3}}{27}-\frac{ab}{3}+c \right)^{2}+\frac{1}{27}\left(b-\frac{a^{2}}{3} \right)^{3}}}-\frac{a}{3} \\ x_{2}=\sqrt[3]{-\frac{1}{2}\left(\frac{2a^{3}}{27}-\frac{ab}{3}+c \right)+\sqrt{\frac{1}{4}\left( \frac{2a^{3}}{27}-\frac{ab}{3}+c \right)^{2}+\frac{1}{27}\left(b-\frac{a^{2}}{3} \right)^{3}}}\omega+\sqrt[3]{-\frac{1}{2}\left(\frac{2a^{3}}{27}-\frac{ab}{3}+c \right)-\sqrt{\frac{1}{4}\left( \frac{2a^{3}}{27}-\frac{ab}{3}+c \right)^{2}+\frac{1}{27}\left(b-\frac{a^{2}}{3} \right)^{3}}}\omega^{2} -\frac{a }{3} \\ x_{3}=\sqrt[3]{-\frac{1}{2}\left(\frac{2a^{3}}{27}-\frac{ab}{3}+c \right)+\sqrt{\frac{1}{4}\left( \frac{2a^{3}}{27}-\frac{ab}{3}+c \right)^{2}+\frac{1}{27}\left(b-\frac{a^{2}}{3} \right)^{3}}}\omega^{2}+\sqrt[3]{-\frac{1}{2}\left(\frac{2a^{3}}{27}-\frac{ab}{3}+c \right)-\sqrt{\frac{1}{4}\left( \frac{2a^{3}}{27}-\frac{ab}{3}+c \right)^{2}+\frac{1}{27}\left(b-\frac{a^{2}}{3} \right)^{3}}}\omega -\frac{a }{3} \end{cases}