멀티 인덱스 표기법
📂편미분방정식 멀티 인덱스 표기법 정의 각 성분이 음이 아닌 정수인 순서쌍 α = ( α 1 , α 2 , ⋯ , α n ) \alpha=(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}) α = ( α 1 , α 2 , ⋯ , α n ) 을 오더가 ∣ α ∣ |\alpha| ∣ α ∣ 인 멀티 인덱스 multi-index 라고 한다. 이때 ∣ α ∣ | \alpha| ∣ α ∣ 는 다음과 같다.
∣ α ∣ = ∑ i n α i = α 1 + ⋯ + α n
|\alpha| = \sum _{i}^{n} \alpha_{i} = \alpha_{1} + \cdots + \alpha_{n}
∣ α ∣ = i ∑ n α i = α 1 + ⋯ + α n
표기법 x = ( x 1 , x 2 , … , x n ) ∈ R n x = (x_{1}, x_{2}, \dots, x_{n}) \in \mathbb{R}^{n} x = ( x 1 , x 2 , … , x n ) ∈ R n 에 대해서 x α x^{\alpha} x α 는 다음과 같다.
x α : = x 1 α 1 x 2 α 2 ⋯ x n α n
x^{\alpha} := x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
x α := x 1 α 1 x 2 α 2 ⋯ x n α n
멀티인덱스는 다음과 같이 편미분을 나타낼 때 자주 쓰인다.
D α : = ∂ ∣ α ∣ ∂ x 1 α 1 ⋯ ∂ x n α n = ( ∂ ∂ x 1 ) α 1 ( ∂ ∂ x 2 ) α 2 ⋯ ( ∂ ∂ x n ) α n = ∂ x 1 α 1 ⋯ ∂ x n α n
\begin{align*}
D^\alpha :=&\ \dfrac{\partial ^{|\alpha|} } {{\partial x_{1}}^{\alpha_{1}}\cdots {\partial x_{n}}^{\alpha_{n}}}
\\ =&\ \left( \frac{ \partial }{ \partial x_{1}} \right)^{\alpha_{1}}\left( \frac{ \partial }{ \partial x_{2}} \right)^{\alpha_{2}}\cdots \left( \frac{ \partial }{ \partial x_{n}} \right)^{\alpha_{n}}
\\ =&\ \partial^{\alpha_{1}}_{x_{1}}\cdots\partial^{\alpha_{n}}_{x_{n}}
\end{align*}
D α := = = ∂ x 1 α 1 ⋯ ∂ x n α n ∂ ∣ α ∣ ( ∂ x 1 ∂ ) α 1 ( ∂ x 2 ∂ ) α 2 ⋯ ( ∂ x n ∂ ) α n ∂ x 1 α 1 ⋯ ∂ x n α n
예를 들어 α = ( 2 , 1 , 0 ) \alpha=(2,1,0) α = ( 2 , 1 , 0 ) 라고 한다면 D α u ( x ) D^{\alpha} u(x) D α u ( x ) 는 다음을 의미한다.
D α u ( x ) = ∂ 3 u ( x ) ∂ x 1 ∂ x 1 ∂ x 2 = ∂ 3 u ( x ) ∂ x 1 2 ∂ x 2
D^{\alpha} u(x)=\dfrac{ \partial^3 u(x)} {\partial x_{1} \partial x_{1} \partial x_{2}}=\dfrac{ \partial^3 u(x)} {\partial x_{1} ^{2} \partial x_{2}}
D α u ( x ) = ∂ x 1 ∂ x 1 ∂ x 2 ∂ 3 u ( x ) = ∂ x 1 2 ∂ x 2 ∂ 3 u ( x )
또한 k ≥ 0 k \ge 0 k ≥ 0 인 정수에 대해서 D k D^k D k 를 다음과 같이 정의한다.
D k u : = { D α u : ∣ α ∣ = k }
D^ku:=\left\{ D^{\alpha} u : |\alpha|=k \right\}
D k u := { D α u : ∣ α ∣ = k }
D k u D^{k}u D k u 는 오더가 k k k 인 모든 멀티인덱스 α \alpha α 에 대한 D α u D^{\alpha} u D α u 를 다 모아놓은 집합이다. k k k 는 멀티인덱스가 아니라 음이아닌 정수임을 주의하자. D k u D^{k}u D k u 의 원소들 각각에 순서를 정해주면, 그러니까 이들이 각각 몇 번째 성분인지를 정해주면, D k u D^k u D k u 를 R k \mathbb{R}^{k} R k 의 점으로 생각할 수 있다 . 다음의 예를 보자.
Case 1. k = 1 k=1 k = 1
그래디언트 를 의미한다.
D 1 u = D u : = ( u x 1 , u x 2 , ⋯ , u x n ) = ∇ u ∈ R n
D^1 u=Du:=(u_{x_{1}},\ u_{x_{2}},\ \cdots,\ u_{x_{n}})=\nabla u \ \in \ \mathbb{R^n}
D 1 u = D u := ( u x 1 , u x 2 , ⋯ , u x n ) = ∇ u ∈ R n
Case 2. k = 2 k=2 k = 2
헤세 행렬 을 의미한다.
D 2 u : = ( u x 1 x 1 ⋯ u x 1 x n ⋮ ⋱ ⋯ u x n x 1 ⋯ u x n x n ) ∈ R 2
D^2u := \begin{pmatrix}
u_{x_{1}x_{1}} & \cdots & u{x_{1}x_{n}}
\\ \vdots & \ddots & \cdots
\\ u_{x_{n}x_{1}} & \cdots & u_{x_{n}x_{n}}
\end{pmatrix} \in \ \mathbb{R^2}
D 2 u := u x 1 x 1 ⋮ u x n x 1 ⋯ ⋱ ⋯ u x 1 x n ⋯ u x n x n ∈ R 2
특히 u u u 의 라플라시안 의 경우 u u u 의 헤세 행렬의 대각성분을 모두 더한 것과 같다.
Δ u = ∇ 2 = ∇ ⋅ ∇ u = d i v D u = ∑ i = 1 n u x i x i = t r ( D 2 u )
\Delta u=\nabla^2=\nabla \cdot \nabla u=\mathrm{div} Du = \sum_{i=1}^nu_{x_{i}x_{i}} = \mathrm{tr} (D^2u)
Δ u = ∇ 2 = ∇ ⋅ ∇ u = div D u = i = 1 ∑ n u x i x i = tr ( D 2 u )