logo

곡선 좌표계에서 좌표 변환과 자코비안 📂수리물리

곡선 좌표계에서 좌표 변환과 자코비안

공식

3차원 데카르트 좌표계에서의 부피는 임의의 곡선 좌표계에 대해서 다음과 같이 나타난다.

dxdydz=xq1yq1zq1xq2yq2zq2xq3yq3zq3dq1dq2dq3=xq1xq2xq3yq1yq2yq3zq1zq2zq3dq1dq2dq3 dxdydz =\begin{vmatrix} \dfrac{ \partial x}{ \partial q_{1}} & \dfrac{ \partial y}{ \partial q_{1}} & \dfrac{ \partial z}{ \partial q_{1} } \\[1em] \dfrac{ \partial x}{ \partial q_{2}} & \dfrac{ \partial y}{ \partial q_{2}} & \dfrac{ \partial z}{ \partial q_{2} } \\[1em] \dfrac{ \partial x}{ \partial q_{3}} & \dfrac{ \partial y}{ \partial q_{3}} & \dfrac{ \partial z}{ \partial q_{3} } \end{vmatrix} dq_{1}dq_{2}dq_{3} = \begin{vmatrix}\dfrac{ \partial x}{ \partial q_{1}} & \dfrac{ \partial x}{ \partial q_{2}} & \dfrac{ \partial x}{ \partial q_{3}} \\[1em] \dfrac{ \partial y}{ \partial q_{1}} & \dfrac{ \partial y}{ \partial q_{2}} & \dfrac{ \partial y}{ \partial q_{3}} \\[1em] \dfrac{ \partial z}{ \partial q_{1}} & \dfrac{ \partial z}{ \partial q_{2}} & \dfrac{ \partial z}{ \partial q_{3}} \end{vmatrix}dq_{1}dq_{2}dq_{3}

여기서 계수로 나타나는 행렬식을 자코비안Jacobican 이라 부르고 JJ라 표기한다. 각 좌표계의 자코비안은 다음과 같다.

  • 극 좌표계:

    Jpolar=xrxθyryθ=r J_{polar}=\begin{vmatrix}\dfrac{ \partial x}{ \partial r} & \dfrac{ \partial x}{ \partial \theta} \\[1em] \dfrac{ \partial y}{ \partial r} & \dfrac{ \partial y}{ \partial \theta} \end{vmatrix}=r

  • 원통 좌표계:

    Jcylinderical=xρxϕxzyρyϕyzzρzϕzz=ρ J_{cylinderical}= \begin{vmatrix}\dfrac{ \partial x}{ \partial \rho} & \dfrac{ \partial x}{ \partial \phi} & \dfrac{ \partial x}{ \partial z} \\[1em] \dfrac{ \partial y}{ \partial \rho} & \dfrac{ \partial y}{ \partial \phi} & \dfrac{ \partial y}{ \partial z} \\[1em] \dfrac{ \partial z}{ \partial \rho} & \dfrac{ \partial z}{ \partial \phi} & \dfrac{ \partial z}{ \partial z} \end{vmatrix}=\rho

  • 구 좌표계:

    Jspherical=xrxθxϕyryθyϕzrzθzϕ=r2sinθ J_{spherical}=\begin{vmatrix}\dfrac{ \partial x}{ \partial r} & \dfrac{ \partial x}{ \partial \theta} & \dfrac{ \partial x}{ \partial \phi} \\[1em] \dfrac{ \partial y}{ \partial r} & \dfrac{ \partial y}{ \partial \theta} & \dfrac{ \partial y}{ \partial \phi} \\[1em] \dfrac{ \partial z}{ \partial r} & \dfrac{ \partial z}{ \partial \theta} & \dfrac{ \partial z}{ \partial \phi} \end{vmatrix}=r^{2}\sin\theta

증명

12.PNG

위와 같이 위치 벡터 r\mathbf{r}이 변화할 때 그로 인해 생기는 평행육면체의 부피는 아래와 같다.

drx(dry×drz)=dxdydz d\mathbf{r}_{x} \cdot (d\mathbf{r}_{y} \times d\mathbf{r}_{z})=dxdydz

곡선 좌표계에서 drid\mathbf{r}_{i}ii성분이 dqidq_{i}만큼 바뀌었을 때 위치 벡터 r\mathbf{r}의 변화라고 하자.

dr=dr1+dr2+dr3 d\mathbf{r}=d\mathbf{r}_{1}+d\mathbf{r}_{2}+d\mathbf{r}_{3}

그러면 drd\mathbf{r}이 만드는 평행육면체의 부피는 이를 데카르트 좌표계로 나타내든, 임의의 곡선 좌표계로 나타내든 변하지 않는다. 즉 어떤 좌표계이든 간에 dr1(dr2×dr3)d\mathbf{r}_{1}\cdot (d\mathbf{r}_{2}\times d\mathbf{r}_{3})의 값은 표현하는 변수만 달라질 뿐 일정하다는 말이다. 이제 dqidq_{i}가 아주 작은 변화량이라면 아래와 같이 근사할 수 있다.

dr1=r(q1+dq1,q2,q3)r(q1,q2,q3)=r(q1+dq1,q2,q3)r(q1,q2,q3)dq1dq1=rq1dq1=(xq1x^+yq1y^+zq1z^)dq1dr2=rq2dq2=(xq2x^+yq2y^+zq2z^)dq2dr3=rq3dq3=(xq3x^+yq3y^+zq3z^)dq3 \begin{align*} d\mathbf{r}_{1} &= \mathbf{r}(q_{1}+dq_{1},q_{2},q_{3})-\mathbf{r}(q_{1},q_{2},q_{3}) \\[1em] &=\dfrac{ \mathbf{r}(q_{1}+dq_{1},q_{2},q_{3})-\mathbf{r}(q_{1},q_{2},q_{3})}{ d q_{1} }dq_{1} \\[1em] &= \dfrac{ \partial \mathbf{r}}{ \partial q_{1} }dq_{1}=\left( \dfrac{ \partial x}{ \partial q_{1}}\hat{\mathbf{x}}+\dfrac{ \partial y}{ \partial q_{1}}\hat{\mathbf{y}}+\dfrac{ \partial z}{ \partial q_{1} }\hat{\mathbf{z}} \right)dq_{1} \\[1em] d\mathbf{r}_{2} &= \dfrac{ \partial \mathbf{r}}{ \partial q_{2} }dq_{2}=\left( \dfrac{ \partial x}{ \partial q_{2}}\hat{\mathbf{x}}+\dfrac{ \partial y}{ \partial q_{2}}\hat{\mathbf{y}}+\dfrac{ \partial z}{ \partial q_{2} }\hat{\mathbf{z}} \right)dq_{2} \\[1em] d\mathbf{r}_{3} &= \dfrac{ \partial \mathbf{r}}{ \partial q_{3}}dq_{3}=\left( \dfrac{ \partial x}{ \partial q_{3}}\hat{\mathbf{x}}+\dfrac{ \partial y}{ \partial q_{3}}\hat{\mathbf{y}}+\dfrac{ \partial z}{ \partial q_{3} }\hat{\mathbf{z}} \right)dq_{3} \end{align*}

따라서 부피를 계산하면 다음과 같다.

dr1(dr2×dr3)=(rq1dq1)(rq2dq2×rq3dq3)=(rq1)(rq2×rq3)dq1dq2dq3=xq1yq1zq1xq2yq2zq2xq3yq3zq3dq1dq2dq3 \begin{align*} d\mathbf{r}_{1} \cdot (d\mathbf{r}_{2}\times d\mathbf{r}_{3}) &= \left( \dfrac{ \partial \mathbf{r}}{ \partial q_{1}}dq_{1} \right)\cdot \left( \dfrac{ \partial \mathbf{r}}{ \partial q_{2}}dq_{2}\times \dfrac{ \partial \mathbf{r}}{ \partial q_{3}}dq_{3}\right) \\[1em] &= \left( \dfrac{ \partial \mathbf{r}}{ \partial q_{1}} \right)\cdot \left( \dfrac{ \partial \mathbf{r}}{ \partial q_{2}}\times \dfrac{ \partial \mathbf{r}}{ \partial q_{3}}\right)dq_{1}dq_{2}dq_{3} \\[1em] &= \begin{vmatrix} \dfrac{ \partial x}{ \partial q_{1}} & \dfrac{ \partial y}{ \partial q_{1}} & \dfrac{ \partial z}{ \partial q_{1} } \\[1em] \dfrac{ \partial x}{ \partial q_{2}} & \dfrac{ \partial y}{ \partial q_{2}} & \dfrac{ \partial z}{ \partial q_{2} } \\[1em] \dfrac{ \partial x}{ \partial q_{3}} & \dfrac{ \partial y}{ \partial q_{3}} & \dfrac{ \partial z}{ \partial q_{3} } \end{vmatrix} dq_{1}dq_{2}dq_{3} \end{align*}

임의의 행렬 AA에 대해서 AT=A\left| A^{T} \right| =\left| A \right|이므로 다음을 얻는다.

dxdydz=xq1yq1zq1xq2yq2zq2xq3yq3zq3dq1dq2dq3=xq1xq2xq3yq1yq2yq3zq1zq2zq3dq1dq2dq3 \begin{align*} dxdydz &=\begin{vmatrix} \dfrac{ \partial x}{ \partial q_{1}} & \dfrac{ \partial y}{ \partial q_{1}} & \dfrac{ \partial z}{ \partial q_{1} } \\[1em] \dfrac{ \partial x}{ \partial q_{2}} & \dfrac{ \partial y}{ \partial q_{2}} & \dfrac{ \partial z}{ \partial q_{2} } \\[1em] \dfrac{ \partial x}{ \partial q_{3}} & \dfrac{ \partial y}{ \partial q_{3}} & \dfrac{ \partial z}{ \partial q_{3} } \end{vmatrix} dq_{1}dq_{2}dq_{3} \\[1em] &= \begin{vmatrix}\dfrac{ \partial x}{ \partial q_{1}} & \dfrac{ \partial x}{ \partial q_{2}} & \dfrac{ \partial x}{ \partial q_{3}} \\[1em] \dfrac{ \partial y}{ \partial q_{1}} & \dfrac{ \partial y}{ \partial q_{2}} & \dfrac{ \partial y}{ \partial q_{3}} \\[1em] \dfrac{ \partial z}{ \partial q_{1}} & \dfrac{ \partial z}{ \partial q_{2}} & \dfrac{ \partial z}{ \partial q_{3}} \end{vmatrix}dq_{1}dq_{2}dq_{3} \end{align*}