곡선 좌표계에서 좌표 변환과 자코비안 
📂수리물리 곡선 좌표계에서 좌표 변환과 자코비안 공식 3차원 데카르트 좌표계에서의 부피는 임의의 곡선 좌표계 에 대해서 다음과 같이 나타난다.
d x d y d z = ∣ ∂ x ∂ q 1 ∂ y ∂ q 1 ∂ z ∂ q 1 ∂ x ∂ q 2 ∂ y ∂ q 2 ∂ z ∂ q 2 ∂ x ∂ q 3 ∂ y ∂ q 3 ∂ z ∂ q 3 ∣ d q 1 d q 2 d q 3 = ∣ ∂ x ∂ q 1 ∂ x ∂ q 2 ∂ x ∂ q 3 ∂ y ∂ q 1 ∂ y ∂ q 2 ∂ y ∂ q 3 ∂ z ∂ q 1 ∂ z ∂ q 2 ∂ z ∂ q 3 ∣ d q 1 d q 2 d q 3 
dxdydz =\begin{vmatrix} \dfrac{ \partial x}{ \partial q_{1}} & \dfrac{ \partial y}{ \partial q_{1}} & \dfrac{ \partial z}{ \partial q_{1} }
\\[1em] \dfrac{ \partial x}{ \partial q_{2}} & \dfrac{ \partial y}{ \partial q_{2}} & \dfrac{ \partial z}{ \partial q_{2} }
\\[1em] \dfrac{ \partial x}{ \partial q_{3}} & \dfrac{ \partial y}{ \partial q_{3}} & \dfrac{ \partial z}{ \partial q_{3} } \end{vmatrix} dq_{1}dq_{2}dq_{3} = \begin{vmatrix}\dfrac{ \partial x}{ \partial q_{1}} & \dfrac{ \partial x}{ \partial q_{2}} & \dfrac{ \partial x}{ \partial q_{3}}
\\[1em] \dfrac{ \partial y}{ \partial q_{1}} & \dfrac{ \partial y}{ \partial q_{2}} & \dfrac{ \partial y}{ \partial q_{3}}
\\[1em] \dfrac{ \partial z}{ \partial q_{1}} & \dfrac{ \partial z}{ \partial q_{2}} & \dfrac{ \partial z}{ \partial q_{3}} \end{vmatrix}dq_{1}dq_{2}dq_{3}
 d x d y d z =  ∂ q 1  ∂ x  ∂ q 2  ∂ x  ∂ q 3  ∂ x   ∂ q 1  ∂ y  ∂ q 2  ∂ y  ∂ q 3  ∂ y   ∂ q 1  ∂ z  ∂ q 2  ∂ z  ∂ q 3  ∂ z    d q 1  d q 2  d q 3  =  ∂ q 1  ∂ x  ∂ q 1  ∂ y  ∂ q 1  ∂ z   ∂ q 2  ∂ x  ∂ q 2  ∂ y  ∂ q 2  ∂ z   ∂ q 3  ∂ x  ∂ q 3  ∂ y  ∂ q 3  ∂ z    d q 1  d q 2  d q 3  
여기서 계수로 나타나는 행렬식을 자코비안 Jacobican  이라 부르고 J J J 
극 좌표계: 
J p o l a r = ∣ ∂ x ∂ r ∂ x ∂ θ ∂ y ∂ r ∂ y ∂ θ ∣ = r 
J_{polar}=\begin{vmatrix}\dfrac{ \partial x}{ \partial r} & \dfrac{ \partial x}{ \partial \theta}
\\[1em] \dfrac{ \partial y}{ \partial r} & \dfrac{ \partial y}{ \partial \theta} \end{vmatrix}=r
 J p o l a r  =  ∂ r ∂ x  ∂ r ∂ y   ∂ θ ∂ x  ∂ θ ∂ y    = r 
원통 좌표계: 
J c y l i n d e r i c a l = ∣ ∂ x ∂ ρ ∂ x ∂ ϕ ∂ x ∂ z ∂ y ∂ ρ ∂ y ∂ ϕ ∂ y ∂ z ∂ z ∂ ρ ∂ z ∂ ϕ ∂ z ∂ z ∣ = ρ 
J_{cylinderical}= \begin{vmatrix}\dfrac{ \partial x}{ \partial \rho} & \dfrac{ \partial x}{ \partial \phi} & \dfrac{ \partial x}{ \partial z}
\\[1em] \dfrac{ \partial y}{ \partial \rho} & \dfrac{ \partial y}{ \partial \phi} & \dfrac{ \partial y}{ \partial z}
\\[1em] \dfrac{ \partial z}{ \partial \rho} & \dfrac{ \partial z}{ \partial \phi} & \dfrac{ \partial z}{ \partial z} \end{vmatrix}=\rho
 J cy l in d er i c a l  =  ∂ ρ ∂ x  ∂ ρ ∂ y  ∂ ρ ∂ z   ∂ ϕ ∂ x  ∂ ϕ ∂ y  ∂ ϕ ∂ z   ∂ z ∂ x  ∂ z ∂ y  ∂ z ∂ z    = ρ 
구 좌표계: 
J s p h e r i c a l = ∣ ∂ x ∂ r ∂ x ∂ θ ∂ x ∂ ϕ ∂ y ∂ r ∂ y ∂ θ ∂ y ∂ ϕ ∂ z ∂ r ∂ z ∂ θ ∂ z ∂ ϕ ∣ = r 2 sin  θ 
J_{spherical}=\begin{vmatrix}\dfrac{ \partial x}{ \partial r} & \dfrac{ \partial x}{ \partial \theta} & \dfrac{ \partial x}{ \partial \phi}
\\[1em] \dfrac{ \partial y}{ \partial r} & \dfrac{ \partial y}{ \partial \theta} & \dfrac{ \partial y}{ \partial \phi}
\\[1em] \dfrac{ \partial z}{ \partial r} & \dfrac{ \partial z}{ \partial \theta} & \dfrac{ \partial z}{ \partial \phi} \end{vmatrix}=r^{2}\sin\theta
 J s p h er i c a l  =  ∂ r ∂ x  ∂ r ∂ y  ∂ r ∂ z   ∂ θ ∂ x  ∂ θ ∂ y  ∂ θ ∂ z   ∂ ϕ ∂ x  ∂ ϕ ∂ y  ∂ ϕ ∂ z    = r 2 sin θ 
증명 
위와 같이 위치 벡터 r \mathbf{r} r 평행육면체의 부피 는 아래와 같다.
d r x ⋅ ( d r y × d r z ) = d x d y d z 
d\mathbf{r}_{x} \cdot (d\mathbf{r}_{y} \times d\mathbf{r}_{z})=dxdydz
 d r x  ⋅ ( d r y  × d r z  ) = d x d y d z 
곡선 좌표계에서 d r i d\mathbf{r}_{i} d r i  i i i d q i dq_{i} d q i  r \mathbf{r} r 
d r = d r 1 + d r 2 + d r 3 
d\mathbf{r}=d\mathbf{r}_{1}+d\mathbf{r}_{2}+d\mathbf{r}_{3}
 d r = d r 1  + d r 2  + d r 3  
그러면 d r d\mathbf{r} d r d r 1 ⋅ ( d r 2 × d r 3 ) d\mathbf{r}_{1}\cdot (d\mathbf{r}_{2}\times d\mathbf{r}_{3}) d r 1  ⋅ ( d r 2  × d r 3  ) d q i dq_{i} d q i  
d r 1 = r ( q 1 + d q 1 , q 2 , q 3 ) − r ( q 1 , q 2 , q 3 ) = r ( q 1 + d q 1 , q 2 , q 3 ) − r ( q 1 , q 2 , q 3 ) d q 1 d q 1 = ∂ r ∂ q 1 d q 1 = ( ∂ x ∂ q 1 x ^ + ∂ y ∂ q 1 y ^ + ∂ z ∂ q 1 z ^ ) d q 1 d r 2 = ∂ r ∂ q 2 d q 2 = ( ∂ x ∂ q 2 x ^ + ∂ y ∂ q 2 y ^ + ∂ z ∂ q 2 z ^ ) d q 2 d r 3 = ∂ r ∂ q 3 d q 3 = ( ∂ x ∂ q 3 x ^ + ∂ y ∂ q 3 y ^ + ∂ z ∂ q 3 z ^ ) d q 3 
\begin{align*}
d\mathbf{r}_{1} &= \mathbf{r}(q_{1}+dq_{1},q_{2},q_{3})-\mathbf{r}(q_{1},q_{2},q_{3})
\\[1em] &=\dfrac{ \mathbf{r}(q_{1}+dq_{1},q_{2},q_{3})-\mathbf{r}(q_{1},q_{2},q_{3})}{ d q_{1} }dq_{1}
\\[1em] &= \dfrac{ \partial \mathbf{r}}{ \partial q_{1} }dq_{1}=\left( \dfrac{ \partial x}{ \partial q_{1}}\hat{\mathbf{x}}+\dfrac{ \partial y}{ \partial q_{1}}\hat{\mathbf{y}}+\dfrac{ \partial z}{ \partial q_{1} }\hat{\mathbf{z}} \right)dq_{1}
\\[1em] d\mathbf{r}_{2} &= \dfrac{ \partial \mathbf{r}}{ \partial q_{2} }dq_{2}=\left( \dfrac{ \partial x}{ \partial q_{2}}\hat{\mathbf{x}}+\dfrac{ \partial y}{ \partial q_{2}}\hat{\mathbf{y}}+\dfrac{ \partial z}{ \partial q_{2} }\hat{\mathbf{z}} \right)dq_{2}
\\[1em] d\mathbf{r}_{3} &= \dfrac{ \partial \mathbf{r}}{ \partial q_{3}}dq_{3}=\left( \dfrac{ \partial x}{ \partial q_{3}}\hat{\mathbf{x}}+\dfrac{ \partial y}{ \partial q_{3}}\hat{\mathbf{y}}+\dfrac{ \partial z}{ \partial q_{3} }\hat{\mathbf{z}} \right)dq_{3}
\end{align*}
 d r 1  d r 2  d r 3   = r ( q 1  + d q 1  , q 2  , q 3  ) − r ( q 1  , q 2  , q 3  ) = d q 1  r ( q 1  + d q 1  , q 2  , q 3  ) − r ( q 1  , q 2  , q 3  )  d q 1  = ∂ q 1  ∂ r  d q 1  = ( ∂ q 1  ∂ x  x ^ + ∂ q 1  ∂ y  y ^  + ∂ q 1  ∂ z  z ^ ) d q 1  = ∂ q 2  ∂ r  d q 2  = ( ∂ q 2  ∂ x  x ^ + ∂ q 2  ∂ y  y ^  + ∂ q 2  ∂ z  z ^ ) d q 2  = ∂ q 3  ∂ r  d q 3  = ( ∂ q 3  ∂ x  x ^ + ∂ q 3  ∂ y  y ^  + ∂ q 3  ∂ z  z ^ ) d q 3   
따라서 부피를 계산하면 다음과 같다.
d r 1 ⋅ ( d r 2 × d r 3 ) = ( ∂ r ∂ q 1 d q 1 ) ⋅ ( ∂ r ∂ q 2 d q 2 × ∂ r ∂ q 3 d q 3 ) = ( ∂ r ∂ q 1 ) ⋅ ( ∂ r ∂ q 2 × ∂ r ∂ q 3 ) d q 1 d q 2 d q 3 = ∣ ∂ x ∂ q 1 ∂ y ∂ q 1 ∂ z ∂ q 1 ∂ x ∂ q 2 ∂ y ∂ q 2 ∂ z ∂ q 2 ∂ x ∂ q 3 ∂ y ∂ q 3 ∂ z ∂ q 3 ∣ d q 1 d q 2 d q 3 
\begin{align*}
d\mathbf{r}_{1} \cdot (d\mathbf{r}_{2}\times d\mathbf{r}_{3}) &= \left( \dfrac{ \partial \mathbf{r}}{ \partial q_{1}}dq_{1} \right)\cdot \left( \dfrac{ \partial \mathbf{r}}{ \partial q_{2}}dq_{2}\times \dfrac{ \partial \mathbf{r}}{ \partial q_{3}}dq_{3}\right)
\\[1em] &= \left( \dfrac{ \partial \mathbf{r}}{ \partial q_{1}} \right)\cdot \left( \dfrac{ \partial \mathbf{r}}{ \partial q_{2}}\times \dfrac{ \partial \mathbf{r}}{ \partial q_{3}}\right)dq_{1}dq_{2}dq_{3}
\\[1em] &= \begin{vmatrix} \dfrac{ \partial x}{ \partial q_{1}} & \dfrac{ \partial y}{ \partial q_{1}} & \dfrac{ \partial z}{ \partial q_{1} }
\\[1em] \dfrac{ \partial x}{ \partial q_{2}} & \dfrac{ \partial y}{ \partial q_{2}} & \dfrac{ \partial z}{ \partial q_{2} }
\\[1em] \dfrac{ \partial x}{ \partial q_{3}} & \dfrac{ \partial y}{ \partial q_{3}} & \dfrac{ \partial z}{ \partial q_{3} } \end{vmatrix} dq_{1}dq_{2}dq_{3}
\end{align*}
 d r 1  ⋅ ( d r 2  × d r 3  )  = ( ∂ q 1  ∂ r  d q 1  ) ⋅ ( ∂ q 2  ∂ r  d q 2  × ∂ q 3  ∂ r  d q 3  ) = ( ∂ q 1  ∂ r  ) ⋅ ( ∂ q 2  ∂ r  × ∂ q 3  ∂ r  ) d q 1  d q 2  d q 3  =  ∂ q 1  ∂ x  ∂ q 2  ∂ x  ∂ q 3  ∂ x   ∂ q 1  ∂ y  ∂ q 2  ∂ y  ∂ q 3  ∂ y   ∂ q 1  ∂ z  ∂ q 2  ∂ z  ∂ q 3  ∂ z    d q 1  d q 2  d q 3   
임의의 행렬 A A A ∣ A T ∣ = ∣ A ∣ \left| A^{T} \right| =\left| A \right|  A T  = ∣ A ∣ 
d x d y d z = ∣ ∂ x ∂ q 1 ∂ y ∂ q 1 ∂ z ∂ q 1 ∂ x ∂ q 2 ∂ y ∂ q 2 ∂ z ∂ q 2 ∂ x ∂ q 3 ∂ y ∂ q 3 ∂ z ∂ q 3 ∣ d q 1 d q 2 d q 3 = ∣ ∂ x ∂ q 1 ∂ x ∂ q 2 ∂ x ∂ q 3 ∂ y ∂ q 1 ∂ y ∂ q 2 ∂ y ∂ q 3 ∂ z ∂ q 1 ∂ z ∂ q 2 ∂ z ∂ q 3 ∣ d q 1 d q 2 d q 3 
\begin{align*}
dxdydz &=\begin{vmatrix} \dfrac{ \partial x}{ \partial q_{1}} & \dfrac{ \partial y}{ \partial q_{1}} & \dfrac{ \partial z}{ \partial q_{1} }
\\[1em] \dfrac{ \partial x}{ \partial q_{2}} & \dfrac{ \partial y}{ \partial q_{2}} & \dfrac{ \partial z}{ \partial q_{2} }
\\[1em] \dfrac{ \partial x}{ \partial q_{3}} & \dfrac{ \partial y}{ \partial q_{3}} & \dfrac{ \partial z}{ \partial q_{3} } \end{vmatrix} dq_{1}dq_{2}dq_{3}
\\[1em] &= \begin{vmatrix}\dfrac{ \partial x}{ \partial q_{1}} & \dfrac{ \partial x}{ \partial q_{2}} & \dfrac{ \partial x}{ \partial q_{3}}
\\[1em] \dfrac{ \partial y}{ \partial q_{1}} & \dfrac{ \partial y}{ \partial q_{2}} & \dfrac{ \partial y}{ \partial q_{3}}
\\[1em] \dfrac{ \partial z}{ \partial q_{1}} & \dfrac{ \partial z}{ \partial q_{2}} & \dfrac{ \partial z}{ \partial q_{3}} \end{vmatrix}dq_{1}dq_{2}dq_{3}
\end{align*}
 d x d y d z  =  ∂ q 1  ∂ x  ∂ q 2  ∂ x  ∂ q 3  ∂ x   ∂ q 1  ∂ y  ∂ q 2  ∂ y  ∂ q 3  ∂ y   ∂ q 1  ∂ z  ∂ q 2  ∂ z  ∂ q 3  ∂ z    d q 1  d q 2  d q 3  =  ∂ q 1  ∂ x  ∂ q 1  ∂ y  ∂ q 1  ∂ z   ∂ q 2  ∂ x  ∂ q 2  ∂ y  ∂ q 2  ∂ z   ∂ q 3  ∂ x  ∂ q 3  ∂ y  ∂ q 3  ∂ z    d q 1  d q 2  d q 3   
■