logo

テンソル積の行列表現 📂線形代数

テンソル積の行列表現

선형대수
[ 펼치기 · 접기 ]

ビルドアップ1

有限次元 ベクトル空間 $V, V^{\prime}$に対してそれぞれ基底 $\mathcal{V}, {\mathcal{V}}^{\prime}$を選ぼう。すれば、線形変換 $\phi : V \to V^{\prime}$に等価な行列 $\begin{bmatrix} \phi \end{bmatrix}_{\mathcal{V}}^{{\mathcal{V}}^{\prime}}$が存在し、これを $\phi$の行列表現という。今、有限次元ベクトル空間 $V, V^{\prime}, W, W^{\prime}$とその順序基底 $\mathcal{V}, {\mathcal{V}}^{\prime}, \mathcal{W}, {\mathcal{W}}^{\prime}$、そして二つの線形変換 $\phi : V \to V^{\prime}$、$\psi : W \to W^{\prime}$が与えられたとする。

$$ n = \dim V,\quad m = \dim V^{\prime},\quad p = \dim W,\quad q = \dim W^{\prime} $$

$$ \mathcal{V} = \left\{ v_{i} \right\}_{i=1}^{n},\quad {\mathcal{V}}^{\prime} = \left\{ v_{j}^{\prime} \right\}_{j=1}^{m},\quad \mathcal{W} = \left\{ w_{k} \right\}_{k=1}^{p},\quad {\mathcal{W}}^{\prime} = \left\{ w_{l}^{\prime} \right\}_{l=1}^{q} $$

すると、二つの線形変換 $\phi$、$\psi$の行列表現は次のように存在する。

$$ A = \begin{bmatrix} \phi \end{bmatrix}_{\mathcal{V}}^{{\mathcal{V}}^{\prime}}\in M_{m \times n} \qquad B = \begin{bmatrix} \psi \end{bmatrix}_{\mathcal{W}}^{{\mathcal{W}}^{\prime}} \in M_{q \times p} $$

テンソル積 $V \otimes W$の順序基底を $\mathcal{V} \otimes \mathcal{W} = \left\{ v_{i} \otimes w_{k} \right\}$と表記して、順番を次のようにしよう。

$$ v_{1} \otimes w_{1}, \dots, v_{1} \times w_{p}, \\ v_{2}\otimes w_{1}, \dots, v_{2} \times w_{p}, \\ \dots \\ v_{n}\otimes w_{1}, \dots, v_{n} \times w_{p} $$

$V^{\prime} \otimes W^{\prime}$の基底 $\mathcal{V}^{\prime} \otimes \mathcal{W}^{\prime} = \left\{ v_{j}^{\prime} \otimes w_{l}^{\prime} \right\}$にも同じ式で順序を付けよう。すると、$\phi$と $\psi$のテンソル積もまた $\phi \otimes \psi : V \otimes W \to V^{\prime} \otimes W^{\prime}$である線形変換なので、以下のような行列表現matrix representationが存在する。

$$ \begin{bmatrix} \phi \otimes \psi \end{bmatrix}_{\mathcal{V} \otimes \mathcal{W}}^{{\mathcal{V}}^{\prime} \otimes \mathcal{W}^{\prime}} $$

定理

二つの線形変換 $\phi : V \to V^{\prime}$、$\psi : W \to W^{\prime}$の行列表現をそれぞれ $A = \begin{bmatrix} \phi \end{bmatrix}_{\mathcal{V}}^{{\mathcal{V}}^{\prime}}$、$B = \begin{bmatrix} \psi \end{bmatrix}_{\mathcal{W}}^{{\mathcal{W}}^{\prime}}$とする。テンソル積 $\phi \otimes \psi : V \otimes W \to V^{\prime} \otimes W^{\prime}$の行列表現は、$A$と$B$のクロネッカー積と同じである。

$$ \begin{bmatrix} \phi \otimes \psi \end{bmatrix}_{\mathcal{V} \otimes \mathcal{W}}^{{\mathcal{V}}^{\prime} \otimes \mathcal{W}^{\prime}} = A \otimes B = \begin{bmatrix} \phi \end{bmatrix}_{\mathcal{V}}^{{\mathcal{V}}^{\prime}} \otimes \begin{bmatrix} \psi \end{bmatrix}_{\mathcal{W}}^{{\mathcal{W}}^{\prime}} $$

証明

行列表現 $\begin{bmatrix} \phi \otimes \psi \end{bmatrix}_{\mathcal{V} \otimes \mathcal{W}}^{{\mathcal{V}}^{\prime} \otimes \mathcal{W}^{\prime}}$を見つけるには、定義域の基底 $\mathcal{V} \otimes \mathcal{W}$が $\phi \otimes \psi$によってどのようにマッピングされるかを見ればいい。まず二つの線形変換の行列表現を次のようにしよう。

$$ \begin{bmatrix} \phi \end{bmatrix}_{\mathcal{V}}^{{\mathcal{V}}^{\prime}} = A = [ \alpha_{ji} ] \in M_{m \times n} \qquad \begin{bmatrix} \psi \end{bmatrix}_{\mathcal{W}}^{{\mathcal{W}}^{\prime}} = B = [ \beta_{lk} ] \in M_{q \times p} $$

つまり $\phi (v_{i}) = \sum\limits_{j}\alpha_{ji}v_{j}^{\prime}$、$\psi (w_{k}) = \sum\limits_{l}\beta_{lk}w_{k}^{\prime}$である。線形変換のテンソル積積ベクトルの定義により、基底ベクター $v_{i} \otimes w_{k}$は次のようにマッピングされる。

$$ \begin{align*} (\phi \otimes \psi)(v_{i} \otimes w_{k}) &= \phi (v_{i}) \otimes \psi (w_{k}) \\ &= \left( \sum\limits_{j}\alpha_{ji}v_{j}^{\prime} \right) \otimes \left( \sum\limits_{l}\beta_{lk}w_{l}^{\prime} \right) \\ &= \sum_{j,l} \alpha_{ji}\beta_{lk} v_{j}^{\prime} \otimes w_{l}^{\prime} \\ \end{align*} $$

$$ \implies \left[ (\phi \otimes \psi)(v_{i} \otimes w_{k}) \right]_{{\mathcal{V}}^{\prime} \otimes \mathcal{W}^{\prime}} = \begin{bmatrix} \alpha_{1i}\beta_{1k} \\ \alpha_{1i}\beta_{2k} \\ \vdots \\ \alpha_{1i}\beta_{qk} \\ \alpha_{2i}\beta_{1k} \\ \alpha_{2i}\beta_{2k} \\ \vdots \\ \alpha_{2i}\beta_{qk} \\ \vdots \\ \alpha_{mi}\beta_{1k} \\ \alpha_{mi}\beta_{2k} \\ \vdots \\ \alpha_{mi}\beta_{qk} \\ \end{bmatrix} $$

だから、まとめると次のようになる。

$$ \begin{align*} & \begin{bmatrix} \phi \otimes \psi \end{bmatrix}_{\mathcal{V} \otimes \mathcal{W}}^{{\mathcal{V}}^{\prime} \otimes \mathcal{W}^{\prime}} \\ &= \begin{bmatrix} \left[ \phi (v_{1}) \otimes \psi (w_{1}) \right]_{{\mathcal{V}}^{\prime} \otimes \mathcal{W}^{\prime}} & \left[ \phi (v_{1}) \otimes \psi (w_{2}) \right]_{{\mathcal{V}}^{\prime} \otimes \mathcal{W}^{\prime}} & \cdots & \left[ \phi (v_{n}) \otimes \psi (w_{p}) \right]_{{\mathcal{V}}^{\prime} \otimes \mathcal{W}^{\prime}} \end{bmatrix} \\ &= \left[ \begin{array}{cccc|c|cccc} \alpha_{11}\beta_{11} & \alpha_{11}\beta_{12} & \cdots & \alpha_{11}\beta_{1p} & \cdots & \alpha_{1n}\beta_{11} & \alpha_{1n}\beta_{12} & \cdots & \alpha_{1n}\beta_{1p} & \\ \alpha_{11}\beta_{21} & \alpha_{11}\beta_{22} & \cdots & \alpha_{11}\beta_{2p} & \cdots & \alpha_{1n}\beta_{21} & \alpha_{1n}\beta_{22} & \cdots & \alpha_{1n}\beta_{2p} & \\ \vdots & \vdots & \ddots & \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{11}\beta_{q1} & \alpha_{11}\beta_{q2} & \cdots & \alpha_{11}\beta_{qp} & \cdots & \alpha_{1n}\beta_{q1} & \alpha_{1n}\beta_{q2} & \cdots & \alpha_{1n}\beta_{qp} & \\ \hline \alpha_{21}\beta_{11} & \alpha_{21}\beta_{12} & \cdots & \alpha_{21}\beta_{1p} & \cdots & \alpha_{2n}\beta_{11} & \alpha_{2n}\beta_{12} & \cdots & \alpha_{2n}\beta_{1p} & \\ \alpha_{21}\beta_{21} & \alpha_{21}\beta_{22} & \cdots & \alpha_{21}\beta_{2p} & \cdots & \alpha_{2n}\beta_{21} & \alpha_{2n}\beta_{22} & \cdots & \alpha_{2n}\beta_{2p} & \\ \vdots & \vdots & \ddots & \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{21}\beta_{q1} & \alpha_{21}\beta_{q2} & \cdots & \alpha_{21}\beta_{qp} & \cdots & \alpha_{2n}\beta_{q1} & \alpha_{2n}\beta_{q2} & \cdots & \alpha_{2n}\beta_{qp} & \\ \hline \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \hline \alpha_{m1}\beta_{11} & \alpha_{m1}\beta_{12} & \cdots & \alpha_{m1}\beta_{1p} & \cdots & \alpha_{mn}\beta_{11} & \alpha_{mn}\beta_{12} & \cdots & \alpha_{mn}\beta_{1p} & \\ \alpha_{m1}\beta_{21} & \alpha_{m1}\beta_{22} & \cdots & \alpha_{m1}\beta_{2p} & \cdots & \alpha_{mn}\beta_{21} & \alpha_{mn}\beta_{22} & \cdots & \alpha_{mn}\beta_{2p} & \\ \vdots & \vdots & \ddots & \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1}\beta_{q1} & \alpha_{m1}\beta_{q2} & \cdots & \alpha_{m1}\beta_{qp} & \cdots & \alpha_{mn}\beta_{q1} & \alpha_{mn}\beta_{q2} & \cdots & \alpha_{mn}\beta_{qp} & \\ \end{array} \right] \\ &= \left[ \begin{array}{c} \alpha_{11} \begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1p} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{q1} & \beta_{q2} & \cdots & \beta_{qp} \end{bmatrix} & \cdots & \alpha_{1n}\begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1p} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{q1} & \beta_{q2} & \cdots & \beta_{qp} \end{bmatrix} \\ \alpha_{21} \begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1p} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{q1} & \beta_{q2} & \cdots & \beta_{qp} \end{bmatrix} & \cdots & \alpha_{2n}\begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1p} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{q1} & \beta_{q2} & \cdots & \beta_{qp} \end{bmatrix} \\ \vdots & \ddots & \vdots \\ \alpha_{m1} \begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1p} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{q1} & \beta_{q2} & \cdots & \beta_{qp} \end{bmatrix} & \cdots & \alpha_{mn}\begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1p} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{q1} & \beta_{q2} & \cdots & \beta_{qp} \end{bmatrix} \\ \end{array} \right] \\ &= \begin{bmatrix} \alpha_{11} B & \cdots & \alpha_{1n} B \\ \alpha_{21} B & \cdots & \alpha_{2n} B \\ \vdots & \ddots & \vdots \\ \alpha_{m1} B & \cdots & \alpha_{mn} B \end{bmatrix} \\ &= A \otimes B \end{align*} $$


  1. 김영훈·허재성, 양자 정보 이론 (2020), p36 ↩︎