logo

Segmentation 📂Analysis

Segmentation

This post is based on the Riemann-Stieltjes integral. If we set as α=α(x)=x\alpha=\alpha (x)=x, it is the same as the Riemann integral.

Definition

  • If PP^{\ast} and PP are partitions of [a,b][a,b] and satisfy PPP \subseteq P^{\ast}, then PP^{\ast} is called a refinement of PP. Hence, every point in PP is a point in PP^{\ast}.

  • For any two partitions P1P_{1} and P2P_{2}, P3=P1P2P_{3}=P_{1} \cup P_{2} is called the common refinement of P1P_{1} and P2P_{2}.


Recall how integrals were defined in high school by dividing a given graph into nn equal parts, and taking the limit as nn goes to infinity. This makes it easy to understand the role of refinements.

Theorem

Let’s say PP^{\ast} is a refinement of PP. Then the following two equations hold:

L(P,f,α)L(P,f,α)U(P,f,α)U(P,f,α) \begin{align} L(P,f,\alpha) &\le L(P^{\ast},f,\alpha) \label{eq1} \\ U(P^{\ast},f,\alpha) &\le U(P,f,\alpha) \label{eq2} \end{align}

Here, LL and UU are, respectively, the Riemann(-Stieltjes) upper and lower sums.


In other words, as the partition is refined, the lower sum increases and the upper sum decreases.

Proof

Before proving, let’s state the following:


Let’s say PP^{\ast} is a refinement of PP with just one more point and call this point xx^{\ast}. Suppose for some i=1,,ni=1,\cdots ,n, we have xi1<x<xix_{i-1} < x^{\ast} < x_{i}.

(eq1)\eqref{eq1}

The Riemann(-Stieltjes) lower sum for PP is as follows:

L(P,f,α)=i=1nmiΔαi=m1Δα1++mi[α(xi)α(xi1)]++mnΔαn=m1Δα1++mi[α(xi)α(x)]+mi[α(x)α(xi1)]++mnΔαn \begin{align*} L(P,f,\alpha) &= \sum \limits _{i=1} ^n m_{i} \Delta \alpha_{i} \\ &= m_{1}\Delta \alpha_{1} + \cdots + m_{i} \left[ \alpha (x_{i}) - \alpha (x_{i-1}) \right] + \cdots + m_{n}\Delta \alpha_{n} \\ &= m_{1}\Delta \alpha_{1} + \cdots + m_{i} \left[ \alpha (x_{i}) -\alpha (x^{\ast}) \right] + m_{i} \left[ \alpha (x^{\ast})- \alpha (x_{i-1}) \right] + \cdots + m_{n}\Delta \alpha_{n} \end{align*}

And let’s set the following:

w1=inff(x)(xi1xx)w2=inff(x)(xxxi) \begin{align*} w_{1} &= \inf f(x) &(x_{i-1} \le x \le x^{\ast}) \\ w_2&= \inf f(x) &(x^{\ast} \le x \le x_{i}) \end{align*}

Then, since mi=inff(x)  (xi1xxi)m_{i}=\inf f(x)\ \ (x_{i-1} \le x \le x_{i}), the following holds:

miw1andmiw2 m_{i} \le w_{1} \quad \text{and} \quad m_{i} \le w_2

Therefore, we obtain the following:

mi[α(xi)α(x)]+mi[α(x)α(xi1)]w2[α(xi)α(x)]+w1[α(x)α(xi1)]=w1[α(x)α(xi1)]+w2[α(xi)α(x)] \begin{align*} m_{i} \left[ \alpha (x_{i}) - \alpha (x^{\ast}) \right] + m_{i}\left[ \alpha (x^{\ast}) - \alpha (x_{i-1}) \right] &\le w_2 \left[ \alpha (x_{i}) - \alpha (x^{\ast}) \right] + w_{1}\left[ \alpha (x^{\ast}) - \alpha (x_{i-1}) \right] \\ &= w_{1}\left[ \alpha (x^{\ast}) - \alpha (x_{i-1}) \right] + w_2 \left[ \alpha (x_{i}) - \alpha (x^{\ast}) \right] \end{align*}

Thus, the following holds:

L(P,f,α)=m1Δα1++mi[α(xi)α(x)]+mi[α(x)α(xi1)]++mnΔαnw1Δα1++w1[α(x)α(xi1)]+w2[α(xi)α(x)]++mnΔαn=L(P,f,α) \begin{align*} L(P,f,\alpha) &= m_{1}\Delta \alpha_{1} + \cdots + m_{i} \left[ \alpha (x_{i}) -\alpha (x^{\ast}) \right] + m_{i} \left[ \alpha (x^{\ast})- \alpha (x_{i-1}) \right] + \cdots + m_{n}\Delta \alpha_{n} \\ &\le w_{1}\Delta \alpha_{1} + \cdots + w_{1}\left[ \alpha (x^{\ast}) - \alpha (x_{i-1}) \right] + w_2 \left[ \alpha (x_{i}) - \alpha (x^{\ast}) \right] + \cdots + m_{n}\Delta \alpha_{n} \\ &= L(P^{\ast},f,\alpha) \end{align*}

(eq2)\eqref{eq2}

The proof follows the same method as for (eq1)\eqref{eq1}. The Riemann(-Stieltjes) upper sum for PP is as follows:

U(P,f,α)=i=1nMiΔαi=M1Δα1++Mi[α(xi)α(xi1)]++MnΔαn=M1Δα1++Mi[α(xi)α(x)]+Mi[α(x)α(xi1)]++MnΔαn \begin{align*} U(P,f,\alpha) &= \sum \limits _{i=1} ^n M_{i} \Delta \alpha_{i} \\ &= M_{1}\Delta \alpha_{1} + \cdots + M_{i} \left[ \alpha (x_{i}) - \alpha (x_{i-1}) \right] + \cdots + M_{n}\Delta \alpha_{n} \\ &= M_{1}\Delta \alpha_{1} + \cdots + M_{i} \left[ \alpha (x_{i}) -\alpha (x^{\ast}) \right] + M_{i} \left[ \alpha (x^{\ast})- \alpha (x_{i-1}) \right] + \cdots + M_{n}\Delta \alpha_{n} \end{align*}

And let’s set the following:

W1=supf(x)(xi1xx)W2=supf(x)(xxxi) \begin{align*} W_{1} &= \sup f(x)& (x_{i-1} \le x \le x^{\ast}) \\ W_2&= \sup f(x)&(x^{\ast} \le x \le x_{i}) \end{align*} Then, since Mi=supf(x)  (xi1xxi)M_{i}=\sup f(x)\ \ (x_{i-1} \le x \le x_{i}), the following holds:

W1MiandW2Mi W_{1} \le M_{i} \quad \text{and} \quad W_2 \le M_{i}

Therefore, we obtain the following:

Mi[α(xi)α(x)]+Mi[α(x)α(xi1)]W2[α(xi)α(x)]+W1[α(x)α(xi1)]=W1[α(x)α(xi1)]+W2[α(xi)α(x)] \begin{align*} M_{i} \left[ \alpha (x_{i}) - \alpha (x^{\ast}) \right] + M_{i}\left[ \alpha (x^{\ast}) - \alpha (x_{i-1}) \right] & \ge W_2 \left[ \alpha (x_{i}) - \alpha (x^{\ast}) \right] + W_{1}\left[ \alpha (x^{\ast}) - \alpha (x_{i-1}) \right] \\ &= W_{1}\left[ \alpha (x^{\ast}) - \alpha (x_{i-1}) \right] + W_2 \left[ \alpha (x_{i}) - \alpha (x^{\ast}) \right] \end{align*}

Thus, the following holds:

U(P,f,α)=M1Δα1++Mi[α(xi)α(x)]+Mi[α(x)α(xi1)]++MnΔαnW1Δα1++W1[α(x)α(xi1)]+W2[α(xi)α(x)]++MnΔαn=U(P,f,α) \begin{align*} U(P,f,\alpha) &= M_{1}\Delta \alpha_{1} + \cdots + M_{i} \left[ \alpha (x_{i}) -\alpha (x^{\ast}) \right] + M_{i} \left[ \alpha (x^{\ast})- \alpha (x_{i-1}) \right] + \cdots + M_{n}\Delta \alpha_{n} \\ &\ge W_{1}\Delta \alpha_{1} + \cdots + W_{1}\left[ \alpha (x^{\ast}) - \alpha (x_{i-1}) \right] + W_2 \left[ \alpha (x_{i}) - \alpha (x^{\ast}) \right] + \cdots + M_{n}\Delta \alpha_{n} \\ &= U(P^{\ast},f,\alpha) \end{align*}