logo

Necessary and Sufficient Conditions for Linear Functionals to be Represented by Linearly Independent Combinations 📂Linear Algebra

Necessary and Sufficient Conditions for Linear Functionals to be Represented by Linearly Independent Combinations

Theorem

Let f,f1,,fnf, f_{1} , \cdots , f_{n} be a linear functional with domain XX.

(a) For c1,,cnCc_{1} , \cdots , c_{n} \in \mathbb{C}, f=i=1ncifi\displaystyle f = \sum_{i=1}^{n} c_{i} f_{i}     \iff i=1nker(fi)ker(f)\displaystyle \bigcap_{i=1}^{n} \ker ( f_{i} ) \subset \ker (f)

(b) There exists x1,,xnx_{1} , \cdots , x_{n} satisfying fj(xi)=δijf_{j} (x_{i} ) = \delta_{ij} with f1,,fnf_{1} , \cdots , f_{n} being linearly independent.

Here, δij\delta_{ij} is the Kronecker delta.

Explanation

Consider that the kernel is related to the concept of homogeneous, it can be inferred that it is a useful fact for linear homogeneous differential equations. However, from a learning perspective, it’s recommended to familiarize oneself with the facts as proofs can be excessively long, difficult, and complicated.

Proof

(a)

Strategy: Using only the definition of (    )( \implies ) kernel, it can be easily shown. Specifically, finding c1,,cnc_{1} , \cdots , c_{n}.


  • (    )(\implies )

    Since xi=1nker(fi)\displaystyle x \in \bigcap_{i=1}^{n} \ker ( f_{i} ),

    fi(x)=0 f_{i} ( x ) = 0

    Since f(x)=i=1ncifi(x)=0\displaystyle f(x) = \sum_{i=1}^{n} c_{i} f_{i} (x) = 0,

    xker(f) x \in \ker (f)

    To summarize,

    i=1nker(fi)ker(f) \bigcap_{i=1}^{n} \ker ( f_{i} ) \subset \ker (f)

  • (    )( \impliedby )

    Define Proposition P(n):i=1nker(fi)ker(f)    f=i=1ncifi \displaystyle P(n) : \bigcap_{i=1}^{n} \ker ( f_{i} ) \subset \ker (f) \implies f = \sum_{i=1}^{n} c_{i} f_{i} and use Mathematical Induction.

    It’s trivial if f=0f = 0, so assume f0f \ne 0.

    • Part 1. n=1n=1

      Since ker(f1)ker(f)\ker (f_{1} ) \subset \ker (f),

      f10 f_{1} \ne 0

      f1(x1)=1 f_{1} (x_{1} ) = 1

      There exists x1Xx_{1} \in X such that, if xXx \in X, then xf1(x)x1Xx - f_{1} (x) x_{1} \in X, and applying f1f_{1} yields

      f1(xf1(x)x1)=f1(x)f1(x)f1(x1)=0 f_{1} ( x - f_{1} (x) x_{1} ) = f_{1} ( x ) - f_{1} (x) f_{1} ( x_{1} ) = 0

      That is, xf1(x)x1ker(f1)ker(f)x - f_{1} (x) x_{1} \in \ker (f_{1} ) \subset \ker (f), and applying ff yields

      0=f(xf1(x)x1)=f(x)f1(x)f1(x1) 0 = f ( x - f_{1} (x) x_{1} ) = f(x) - f_{1} (x) f_{1} (x_{1})

      To summarize, it can be shown for f1(x1)Cf_{1} (x_{1}) \in \mathbb{C} that f(x)=f1(x1)f1(X)f(x) = f_{1} (x_{1}) f_{1} (X).

    • Part 2. n=N1n=N-1

      Assume that P(N1)P(N-1) holds.

    • Part 3. n=Nn=N

      • Case 1. If f1,,fNf_{1} , \cdots , f_{N} is not linearly independent

        Since f1,,fNf_{1} , \cdots , f_{N} is not linearly independent,

        t1f1++tNfN=0 t_{1} f_{1} + \cdots + t_{N} f_{N} = 0

        ti00 t_{i_{0}} \ne 0

        Some tiCt_{i} \in \mathbb{C} exists such that

        fi0=1ti0(ii0tifi)=ii0(titi0)fi \displaystyle f_{i_{0}} = {{1} \over { t_{i_{0}} }} \left( \sum_{i \ne i_{0}} t_{i} f_{i} \right) =\sum_{i \ne i_{0}} \left( {{t_{i} } \over { t_{i_{0}} }} \right) f_{i}

        Thus,

        ii0ker(fi)ker(fi0) \bigcap_{i \ne i_{0} } \ker ( f_{i} ) \subset \ker (f_{ i_{0}} )

        Since ii0ker(fi)\displaystyle \bigcap_{i \ne i_{0} } \ker ( f_{i} ) is included in ker(fi0)\displaystyle \ker (f_{ i_{0}} ),

        ii0ker(fi)=[ii0ker(fi)]ker(fi0)=i=1Nker(fi)ker(f) \bigcap_{i \ne i_{0} } \ker ( f_{i} ) = \left[ \bigcap_{i \ne i_{0} } \ker ( f_{i} ) \right] \cap \ker (f_{i_{0}} ) = \bigcap_{i=1}^{ N } \ker ( f_{i} ) \subset \ker (f)

        But, assuming P(N1)P(N-1) in Part 2., c1,,cN1Cc_{1} , \cdots , c_{N-1} \in \mathbb{C} satisfying f=ii0cifi+0fi0\displaystyle f = \sum_{ i \ne i_{0}} c_{i} f_{i} + 0 f_{i_{0}} exists.

      • Case 2. If f1,,fNf_{1} , \cdots , f_{N} is linearly independent

        Assuming kiker(fk)ker(fi)\displaystyle \bigcap_{ k \ne i } \ker ( f_{k} ) \subset \ker (f_{i} ) for 1kN1 \le k \le N, and from Part 2. assuming P(N1)P(N-1) holds, for some λ1,,λNC\lambda_{1} , \cdots , \lambda_{N} \in \mathbb{C}, fi=kiλkfk\displaystyle f_{i} = \sum_{ k \ne i } \lambda_{k} f_{k} can be shown, making f1,,fNf_{1} , \cdots , f_{N} not linearly independent and necessitating kiker(fk)⊄ker(fi)\displaystyle \bigcap_{ k \ne i } \ker ( f_{k} ) \not\subset \ker (f_{i} ). Thus, yi[kiker(fk)]ker(fi) \displaystyle y_{i} \in \left[ \bigcap_{ k \ne i } \ker ( f_{k} ) \right] \setminus \ker (f_{i} )

        yiker(fi) y_{i} \in \ker (f_{i} )

        There exists y1,,yNXy_{1} , \cdots , y_{N} \in X satisfying these. Defining xi:=yifi(yi)\displaystyle x_{i} := {{ y_{i}} \over {f_{i} ( y_{i} ) }},

        {fj(xi)=fj(yi)fi(yi)=0fi(xi)=fi(yi)fi(yi)=1    fj(xi)=δij={0,ij1,i=j \begin{cases} \displaystyle f_{j} (x_{i} ) = {{ f_{j} (y_{i}) } \over { f_{i} (y_{i} ) }} = 0 \\ \displaystyle f_{i} (x_{i} ) = {{ f_{i} (y_{i}) } \over { f_{i} (y_{i} ) }} = 1 \end{cases} \implies f_{j} ( x_{ i} ) = \delta_{ij} = \begin{cases} 0 & , i \ne j \\ 1 & , i = j \end{cases}

        Applying fif_{i} to any xi=1Nfj(x)xj\displaystyle x - \sum_{i=1}^{N} f_{j} (x) x_{j} defined by xXx \in X for all i=1,,Ni = 1 , \cdots , N yields

        fi(xj=1Nfj(x)xj)=fj(x)i=1Nfj(x)fi(xj)=fi(x)j=1Nfj(x)δij=fi(x)fi(x)=0 \begin{align*} f_{i } \left( x - \sum_{j=1}^{N} f_{j} (x) x_{j} \right) =& f_{j} (x) - \sum_{i=1}^{N} f_{j} (x) f_{i} ( x_{j} ) \\ =& f_{i} (x) - \sum_{j=1}^{N} f_{j} (x) \delta_{ij} \\ =& f_{i} (x) - f_{i} (x) \\ =& 0 \end{align*}

        Shown as a subset relation,

        (xj=1Nfj(x)xj)i=1Nker(fi)ker(f) \left( x - \sum_{j=1}^{N} f_{j} (x) x_{j} \right) \in \bigcap_{i=1}^{N} \ker ( f_{i} ) \subset \ker (f)

        Applying ff to xj=1Nfj(x)xj\displaystyle x - \sum_{j=1}^{N} f_{j} (x) x_{j}, according to the definition of kernel,

        f(xj=1Nfj(x)xj)=f(x)j=1Nfj(x)f(xj)=0 f \left( x - \sum_{j=1}^{N} f_{j} (x) x_{j} \right) = f(x) - \sum_{j=1}^{N} f_{j} (x) f ( x_{j} ) = 0

            f(x)=j=1Nfj(x)f(xj)=[j=1Nfjf(xj)](x) \implies f(x) =\sum_{j=1}^{N} f_{j} (x) f ( x_{j} ) = \left[ \sum_{j=1}^{N} f_{j} f ( x_{j} ) \right] (x)

            f=j=1Nf(xj)fj \implies f = \sum_{j=1}^{N} f ( x_{j} ) f_{j}

        Thus, ff is expressed as a linear combination of f1,,fNf_{1} , \cdots , f_{N} for specific f(x1),,f(xN)Cf ( x_{1} ) , \cdots , f ( x_{N} ) \in \mathbb{C}.

      Therefore, Proposition P(n)P(n) holds for all nNn \in \mathbb{N}, regardless of whether f1,,fNf_{1} , \cdots , f_{N} is linearly independent or not.

(b)

Strategy: Essentially a corollary of (a).


  • (    )(\implies)

    In fact, in Proof(a) -(    )(\impliedby)-Part 3. -Case 2., there existed xi:=yifi(yi)\displaystyle x_{i} := {{ y_{i}} \over {f_{i} ( y_{i} ) }} satisfying fj(xi)=δijf_{j} (x_{i} ) = \delta_{ij} with f1,,fnf_{1} , \cdots , f_{n} being linearly independent.

  • (    )(\impliedby)

    When considering c1f1(x)++cnfn(x)=0c_{1} f_{1} (x) + \cdots + c_{n} f_{n} (x) = 0 with the existence of x1,,xnx_{1} , \cdots , x_{n} satisfying fj(xi)=δijf_{j} (x_{i} ) = \delta_{ij},

    c1f1(x1)+0++0=c1=0 c_{1} f_{1} (x_{1} ) + 0 + \cdots + 0 = c_{1} = 0

    Similarly, by applying xix_{i},

    0++0+cifi+0++0=ci=0 0 + \cdots + 0 + c_{i} f_{i} + 0 + \cdots + 0 = c_{i} = 0

    Therefore, the only case satisfying c1f1(x)++cnfn(x)=0c_{1} f_{1} (x) + \cdots + c_{n} f_{n} (x) = 0 is c1==cn=0c_{1} = \cdots = c_{n} = 0, making f1,,fnf_{1} , \cdots , f_{n} linearly independent.