Case 1. If f 1 , ⋯ , f N f_{1} , \cdots , f_{N} f 1 , ⋯ , f N is not linearly independent
Since f 1 , ⋯ , f N f_{1} , \cdots , f_{N} f 1 , ⋯ , f N is not linearly independent,
t 1 f 1 + ⋯ + t N f N = 0
t_{1} f_{1} + \cdots + t_{N} f_{N} = 0
t 1 f 1 + ⋯ + t N f N = 0
t i 0 ≠ 0
t_{i_{0}} \ne 0
t i 0 = 0
Some t i ∈ C t_{i} \in \mathbb{C} t i ∈ C exists such that
f i 0 = 1 t i 0 ( ∑ i ≠ i 0 t i f i ) = ∑ i ≠ i 0 ( t i t i 0 ) f i
\displaystyle f_{i_{0}} = {{1} \over { t_{i_{0}} }} \left( \sum_{i \ne i_{0}} t_{i} f_{i} \right) =\sum_{i \ne i_{0}} \left( {{t_{i} } \over { t_{i_{0}} }} \right) f_{i}
f i 0 = t i 0 1 i = i 0 ∑ t i f i = i = i 0 ∑ ( t i 0 t i ) f i
Thus,
⋂ i ≠ i 0 ker ( f i ) ⊂ ker ( f i 0 )
\bigcap_{i \ne i_{0} } \ker ( f_{i} ) \subset \ker (f_{ i_{0}} )
i = i 0 ⋂ ker ( f i ) ⊂ ker ( f i 0 )
Since ⋂ i ≠ i 0 ker ( f i ) \displaystyle \bigcap_{i \ne i_{0} } \ker ( f_{i} ) i = i 0 ⋂ ker ( f i ) is included in ker ( f i 0 ) \displaystyle \ker (f_{ i_{0}} ) ker ( f i 0 ) ,
⋂ i ≠ i 0 ker ( f i ) = [ ⋂ i ≠ i 0 ker ( f i ) ] ∩ ker ( f i 0 ) = ⋂ i = 1 N ker ( f i ) ⊂ ker ( f )
\bigcap_{i \ne i_{0} } \ker ( f_{i} ) = \left[ \bigcap_{i \ne i_{0} } \ker ( f_{i} ) \right] \cap \ker (f_{i_{0}} ) = \bigcap_{i=1}^{ N } \ker ( f_{i} ) \subset \ker (f)
i = i 0 ⋂ ker ( f i ) = i = i 0 ⋂ ker ( f i ) ∩ ker ( f i 0 ) = i = 1 ⋂ N ker ( f i ) ⊂ ker ( f )
But, assuming P ( N − 1 ) P(N-1) P ( N − 1 ) in Part 2. , c 1 , ⋯ , c N − 1 ∈ C c_{1} , \cdots , c_{N-1} \in \mathbb{C} c 1 , ⋯ , c N − 1 ∈ C satisfying f = ∑ i ≠ i 0 c i f i + 0 f i 0 \displaystyle f = \sum_{ i \ne i_{0}} c_{i} f_{i} + 0 f_{i_{0}} f = i = i 0 ∑ c i f i + 0 f i 0 exists.
Case 2. If f 1 , ⋯ , f N f_{1} , \cdots , f_{N} f 1 , ⋯ , f N is linearly independent
Assuming ⋂ k ≠ i ker ( f k ) ⊂ ker ( f i ) \displaystyle \bigcap_{ k \ne i } \ker ( f_{k} ) \subset \ker (f_{i} ) k = i ⋂ ker ( f k ) ⊂ ker ( f i ) for 1 ≤ k ≤ N 1 \le k \le N 1 ≤ k ≤ N , and from Part 2. assuming P ( N − 1 ) P(N-1) P ( N − 1 ) holds, for some λ 1 , ⋯ , λ N ∈ C \lambda_{1} , \cdots , \lambda_{N} \in \mathbb{C} λ 1 , ⋯ , λ N ∈ C , f i = ∑ k ≠ i λ k f k \displaystyle f_{i} = \sum_{ k \ne i } \lambda_{k} f_{k} f i = k = i ∑ λ k f k can be shown, making f 1 , ⋯ , f N f_{1} , \cdots , f_{N} f 1 , ⋯ , f N not linearly independent and necessitating ⋂ k ≠ i ker ( f k ) ⊄ ker ( f i ) \displaystyle \bigcap_{ k \ne i } \ker ( f_{k} ) \not\subset \ker (f_{i} ) k = i ⋂ ker ( f k ) ⊂ ker ( f i ) . Thus,
y i ∈ [ ⋂ k ≠ i ker ( f k ) ] ∖ ker ( f i )
\displaystyle y_{i} \in \left[ \bigcap_{ k \ne i } \ker ( f_{k} ) \right] \setminus \ker (f_{i} )
y i ∈ k = i ⋂ ker ( f k ) ∖ ker ( f i )
y i ∈ ker ( f i )
y_{i} \in \ker (f_{i} )
y i ∈ ker ( f i )
There exists y 1 , ⋯ , y N ∈ X y_{1} , \cdots , y_{N} \in X y 1 , ⋯ , y N ∈ X satisfying these. Defining x i : = y i f i ( y i ) \displaystyle x_{i} := {{ y_{i}} \over {f_{i} ( y_{i} ) }} x i := f i ( y i ) y i ,
{ f j ( x i ) = f j ( y i ) f i ( y i ) = 0 f i ( x i ) = f i ( y i ) f i ( y i ) = 1 ⟹ f j ( x i ) = δ i j = { 0 , i ≠ j 1 , i = j
\begin{cases} \displaystyle f_{j} (x_{i} ) = {{ f_{j} (y_{i}) } \over { f_{i} (y_{i} ) }} = 0
\\ \displaystyle f_{i} (x_{i} ) = {{ f_{i} (y_{i}) } \over { f_{i} (y_{i} ) }} = 1 \end{cases} \implies f_{j} ( x_{ i} ) = \delta_{ij} = \begin{cases} 0 & , i \ne j
\\ 1 & , i = j \end{cases}
⎩ ⎨ ⎧ f j ( x i ) = f i ( y i ) f j ( y i ) = 0 f i ( x i ) = f i ( y i ) f i ( y i ) = 1 ⟹ f j ( x i ) = δ ij = { 0 1 , i = j , i = j
Applying f i f_{i} f i to any x − ∑ i = 1 N f j ( x ) x j \displaystyle x - \sum_{i=1}^{N} f_{j} (x) x_{j} x − i = 1 ∑ N f j ( x ) x j defined by x ∈ X x \in X x ∈ X for all i = 1 , ⋯ , N i = 1 , \cdots , N i = 1 , ⋯ , N yields
f i ( x − ∑ j = 1 N f j ( x ) x j ) = f j ( x ) − ∑ i = 1 N f j ( x ) f i ( x j ) = f i ( x ) − ∑ j = 1 N f j ( x ) δ i j = f i ( x ) − f i ( x ) = 0
\begin{align*}
f_{i } \left( x - \sum_{j=1}^{N} f_{j} (x) x_{j} \right) =& f_{j} (x) - \sum_{i=1}^{N} f_{j} (x) f_{i} ( x_{j} )
\\ =& f_{i} (x) - \sum_{j=1}^{N} f_{j} (x) \delta_{ij}
\\ =& f_{i} (x) - f_{i} (x)
\\ =& 0
\end{align*}
f i ( x − j = 1 ∑ N f j ( x ) x j ) = = = = f j ( x ) − i = 1 ∑ N f j ( x ) f i ( x j ) f i ( x ) − j = 1 ∑ N f j ( x ) δ ij f i ( x ) − f i ( x ) 0
Shown as a subset relation,
( x − ∑ j = 1 N f j ( x ) x j ) ∈ ⋂ i = 1 N ker ( f i ) ⊂ ker ( f )
\left( x - \sum_{j=1}^{N} f_{j} (x) x_{j} \right) \in \bigcap_{i=1}^{N} \ker ( f_{i} ) \subset \ker (f)
( x − j = 1 ∑ N f j ( x ) x j ) ∈ i = 1 ⋂ N ker ( f i ) ⊂ ker ( f )
Applying f f f to x − ∑ j = 1 N f j ( x ) x j \displaystyle x - \sum_{j=1}^{N} f_{j} (x) x_{j} x − j = 1 ∑ N f j ( x ) x j , according to the definition of kernel ,
f ( x − ∑ j = 1 N f j ( x ) x j ) = f ( x ) − ∑ j = 1 N f j ( x ) f ( x j ) = 0
f \left( x - \sum_{j=1}^{N} f_{j} (x) x_{j} \right) = f(x) - \sum_{j=1}^{N} f_{j} (x) f ( x_{j} ) = 0
f ( x − j = 1 ∑ N f j ( x ) x j ) = f ( x ) − j = 1 ∑ N f j ( x ) f ( x j ) = 0
⟹ f ( x ) = ∑ j = 1 N f j ( x ) f ( x j ) = [ ∑ j = 1 N f j f ( x j ) ] ( x )
\implies f(x) =\sum_{j=1}^{N} f_{j} (x) f ( x_{j} ) = \left[ \sum_{j=1}^{N} f_{j} f ( x_{j} ) \right] (x)
⟹ f ( x ) = j = 1 ∑ N f j ( x ) f ( x j ) = [ j = 1 ∑ N f j f ( x j ) ] ( x )
⟹ f = ∑ j = 1 N f ( x j ) f j
\implies f = \sum_{j=1}^{N} f ( x_{j} ) f_{j}
⟹ f = j = 1 ∑ N f ( x j ) f j
Thus, f f f is expressed as a linear combination of f 1 , ⋯ , f N f_{1} , \cdots , f_{N} f 1 , ⋯ , f N for specific f ( x 1 ) , ⋯ , f ( x N ) ∈ C f ( x_{1} ) , \cdots , f ( x_{N} ) \in \mathbb{C} f ( x 1 ) , ⋯ , f ( x N ) ∈ C .