logo

Sum and Difference Identities for Trigonometric Functions 📂Functions

Sum and Difference Identities for Trigonometric Functions

Formulas

  • Composition into sine

    Acosθ+Bsinθ=Csin(θ+ϕ) A \cos \theta + B \sin \theta = C\sin(\theta + \phi)

    Here, C=A2+B2C = \sqrt{A^{2} + B^{2}}, ϕ=sin1(AA2+B2)=cos1(BA2+B2)\phi = \sin^{-1} \left( \dfrac{A}{\sqrt{A^{2} + B^{2}}} \right) = \cos^{-1} \left( \dfrac{B}{\sqrt{A^{2} + B^{2}}} \right) are given.

  • Composition into cosine

    Acosθ+Bsinθ=Ccos(θϕ) A \cos \theta + B \sin \theta = C\cos(\theta - \phi)

    Here, C=A2+B2C = \sqrt{A^{2} + B^{2}}, ϕ=sin1(BA2+B2)=cos1(AA2+B2)\phi = \sin^{-1} \left( \dfrac{B}{\sqrt{A^{2} + B^{2}}} \right) = \cos^{-1} \left( \dfrac{A}{\sqrt{A^{2} + B^{2}}} \right) are given.

Proof

Grouping two terms Acosθ+BsinθA \cos \theta + B \sin \theta into A2+B2\sqrt{A^{2} + B^{2}},

Acosθ+Bsinθ=A2+B2(AA2+B2cosθ+BA2+B2sinθ) A \cos \theta + B \sin \theta = \sqrt{A^{2} + B^{2}} \left( \dfrac{A}{\sqrt{A^{2} + B^{2}}}\cos \theta + \dfrac{B}{\sqrt{A^{2} + B^{2}}}\sin \theta \right)

Where 1<AA2+B2<1-1 \lt \dfrac{A}{\sqrt{A^{2} + B^{2}}} \lt 1, let’s denote this value as sinϕ\sin \phi.

sinϕ=AA2+B2 \sin \phi = \dfrac{A}{\sqrt{A^{2} + B^{2}}}

Then, as sin2ϕ1=cos2ϕ\sin^{2} \phi - 1 = \cos^{2} \phi,

sin2ϕ1=A2A2+B2A2+B2A2+B2=B2A2+B2=cosϕ \sin^{2} \phi - 1 = \dfrac{A^{2}}{A^{2} + B^{2}} - \dfrac{A^{2} + B^{2}}{A^{2} + B^{2}} = \dfrac{B^{2}}{A^{2} + B^{2}} = \cos \phi

    BA2+B2=cosϕ \implies \dfrac{B}{\sqrt{A^{2} + B^{2}}} = \cos \phi

Now, if we set C=A2+B2C = \sqrt{A^{2} + B^{2}}, according to the addition formula of trigonometric functions,

Acosθ+Bsinθ=C(sinϕcosθ+cosϕsinθ)=Csin(θ+ϕ) A \cos \theta + B \sin \theta = C \left( \sin\phi \cos\theta + \cos\phi \sin\theta \right) = C\sin(\theta + \phi)