logo

If the Sectional Curvature is the Same, the Riemannian Curvature is also the Same. 📂Geometry

If the Sectional Curvature is the Same, the Riemannian Curvature is also the Same.

Theorem1

Let VV be defined in a vector space of dimension 22 or higher, and let ,\left\langle \cdot, \cdot \right\rangle be the inner product defined on VV. Let R:V×V×V×VVR : V \times V \times V \times V \to V and R:V×V×V×VVR^{\prime} : V \times V \times V \times V \to V be multilinear functions satisfying the conditions below.

R(x,y,z,w)=R(x,y)z,w,R(x,y,z,w)=R(x,y)z,w R(x,y,z,w) = \left\langle R(x,y)z, w \right\rangle,\quad R^{\prime}(x,y,z,w) = \left\langle R^{\prime}(x,y)z, w \right\rangle

R(x,y,z,w)+R(y,z,x,w)+R(z,x,y,w)=0R(x,y,z,w)=R(y,x,z,w)R(x,y,z,w)=R(x,y,w,z)R(x,y,z,w)=R(z,w,x,y) \begin{align*} R(x, y, z, w) + R(y, z, x, w) + R(z, x, y, w) &= 0 \tag{a}\\ R(x, y, z, w) &= - R(y, x, z, w) \tag{b}\\ R(x, y, z, w) &= - R(x, y, w, z) \tag{c}\\ R(x, y, z, w) &= R(z, w, x, y) \tag{d} \end{align*}

For two linearly independent vectors x,yx, y, let K,KK, K^{\prime} be the following.

K(σ)=R(x,y,x,y)x×y2,K(σ)=R(x,y,x,y)x×y2 K(\sigma) = \dfrac{R(x,y,x,y)}{\left\| x \times y \right\|^{2}},\quad K^{\prime}(\sigma) = \dfrac{R^{\prime}(x,y,x,y)}{\left\| x \times y \right\|^{2}}

Here, σ\sigma is a 22-dimensional subspace with a basis of {x,y}\left\{ x, y \right\}. If for all σV\sigma \subset V, K(σ)=K(σ)K(\sigma) = K^{\prime}(\sigma) holds, then R=RR = R^{\prime}.

Explanation

The RR mentioned in the statement refers to the Riemann curvature tensor, and KK refers to the sectional curvature.

This theorem tells us that we can know the Riemann curvature tensor RR with just the information about the 22-dimensional subspace.

Proof

The proof is not difficult; it just requires some computation effort.

Claim: R(x,y,z,w)=R(x,y,z,w)x,y,z,wVR(x,y,z,w) = R^{\prime}(x,y,z,w)\quad \forall x,y,z,w \in V

First, it is certain that the following holds by the definition of K,KK, K^{\prime}.

K(σ)=K(σ)    R(x,y,x,y)=R(x,y,x,y) \begin{equation} K(\sigma) = K^{\prime}(\sigma) \implies R(x,y,x,y) = R^{\prime}(x,y,x,y) \end{equation}

Therefore, we obtain the following.

R(x+z,y,x+z,y)=R(x+z,y,x+z,y) R(x+z, y, x+z, y) = R^{\prime}(x+z, y, x+z, y)

This is due to the linearity of R,RR, R^{\prime} as follows.

R(x,y,x,y)+R(z,y,x,y)=R(x,y,x,y)+R(z,y,x,y)+R(x,y,z,y)+R(z,y,z,y)+R(x,y,z,y)+R(z,y,z,y) \begin{align*} R(x,y,x,y) + R(z,y,x,y)\quad &= R^{\prime}(x,y,x,y) + R^{\prime}(z,y,x,y) \\ \quad + R(x,y,z,y) + R(z,y,z,y) &\quad + R^{\prime}(x,y,z,y) + R^{\prime}(z,y,z,y) \end{align*}

The first and fourth terms of both sides can be eliminated by (1)(1).

R(z,y,x,y)+R(x,y,z,y)=R(z,y,x,y)+R(x,y,z,y) R(z,y,x,y) + R(x,y,z,y) = R^{\prime}(z,y,x,y) + R^{\prime}(x,y,z,y)

Then, by changing the first term of each side according to (d)(d), it becomes the following.

R(x,y,z,y)+R(x,y,z,y)=R(x,y,z,y)+R(x,y,z,y)    R(x,y,z,y)=R(x,y,z,y) \begin{align*} && R(x,y,z,y) + R(x,y,z,y) &= R^{\prime}(x,y,z,y) + R^{\prime}(x,y,z,y) \\ \implies && R(x,y,z,y) &= R^{\prime}(x,y,z,y) \tag{2} \end{align*}

From (2)(2), we obtain the following equation.

R(x,y+w,z,y+w)=R(x,y+w,z,y+w) R(x, y+w, z, y+w) = R^{\prime}(x, y+w, z, y+w)

Similarly, due to linearity, it is broken down as follows.

R(x,y,z,y)+R(x,w,z,y)=R(x,y,z,y)+R(x,w,z,y)+R(x,y,z,w)+R(x,w,z,w)+R(x,y,z,w)+R(x,w,z,w) \begin{align*} R(x,y,z,y) + R(x,w,z,y)\quad &= R^{\prime}(x,y,z,y) + R^{\prime}(x,w,z,y) \\ \quad + R(x,y,z,w) + R(x,w,z,w) &\quad + R^{\prime}(x,y,z,w) + R^{\prime}(x,w,z,w) \end{align*}

The first and fourth terms of both sides are mutually eliminated by (2)(2).

R(x,w,z,y)+R(x,y,z,w)=R(x,w,z,y)+R(x,y,z,w)    R(x,y,z,w)R(x,y,z,w)=R(x,w,z,y)R(x,w,z,y) \begin{align*} && R(x,w,z,y) + R(x,y,z,w) &= R^{\prime}(x,w,z,y) + R^{\prime}(x,y,z,w) \\ \implies && R(x,y,z,w) -R^{\prime}(x,y,z,w) &= R^{\prime}(x,w,z,y) - R(x,w,z,y) \end{align*}

Using (b),(d)(b), (d) on the two terms of the right side,

R(x,y,z,w)R(x,y,z,w)=R(y,z,x,w)R(y,z,x,w) R(x,y,z,w) -R^{\prime}(x,y,z,w) = R(y,z,x,w) - R^{\prime}(y,z,x,w)

From this equation, we again obtain the following.

R(x,y,z,w)R(x,y,z,w)=R(y,z,x,w)R(y,z,x,w)=R(z,x,y,w)R(z,x,y,w) \begin{equation} \begin{aligned} R(x,y,z,w) -R^{\prime}(x,y,z,w) &= R(y,z,x,w) - R^{\prime}(y,z,x,w) \\ &= R(z,x,y,w) - R^{\prime}(z,x,y,w) \end{aligned} \end{equation}

Now, from (a)(a), we obtain the following.

R(x,y,z,w)+R(y,z,x,w)+R(z,x,y,w)=0R(x,y,z,w)+R(y,z,x,w)+R(z,x,y,w)=0 R(x,y,z,w) + R(y,z,x,w) + R(z,x,y,w) = 0 \\ R^{\prime}(x,y,z,w) + R^{\prime}(y,z,x,w) + R^{\prime}(z,x,y,w) = 0

Subtracting the equation below from the above,

(R(x,y,z,w)R(x,y,z,w))+(R(y,z,x,w)R(y,z,x,w)) +(R(z,x,y,w)R(z,x,y,w))=0 \left( R(x,y,z,w) - R^{\prime}(x,y,z,w) \right) + \left( R(y,z,x,w) - R^{\prime}(y,z,x,w) \right) \\ \ + \left( R(z,x,y,w) - R^{\prime}(z,x,y,w) \right) = 0

At this time, the three terms enclosed in parentheses are all the same by (3)(3). Therefore,

3(R(x,y,z,w)R(x,y,z,w))=0    R(x,y,z,w)=R(x,y,z,w) 3\left( R(x,y,z,w) - R^{\prime}(x,y,z,w) \right) = 0 \\[1em] \implies R(x,y,z,w) = R^{\prime}(x,y,z,w)


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p94-95 ↩︎