logo

Uniqueness Theorem of Geodesics 📂Geometry

Uniqueness Theorem of Geodesics

Theorem1

Let’s say point pp is on the surface MM and let XTpM\mathbf{X} \in T_{p}M be the unit tangent vector at point pp. Then, there exists a unique geodesic γ:(ϵ,ϵ)M\boldsymbol{\gamma} : (-\epsilon, \epsilon) \to M that satisfies the following initial value condition.

γ(0)=pandγ(0)=X \boldsymbol{\gamma} (0) = p \quad \text{and} \quad \boldsymbol{\gamma}^{\prime}(0) = \mathbf{X}

Description

This theorem states that, at least locally, there exists a straight line of shortest distance connecting two points on a surface.

In global areas, the existence of a shortest-distance geodesic cannot be assured. A simple example can be seen by considering a unit circle that does not contain the origin. In this case, as shown in the following image, we can understand that there is no straight line of shortest distance going from point aa to bb.

1.PNG

Proof

Strategy: In differential geometry, theorems about existence and uniqueness are almost always proved by the Picard’s theorem, which asserts the existence of a solution to the ODE system.


Let x\mathbf{x} be a coordinate chart mapping satisfying p=x(0,0)p = \mathbf{x}(0,0) for point pp. Let (u1,u2)(u^{1}, u^{2}) be the coordinates from x:UM\mathbf{x} : U \to M to UU. Let’s say X=iXixi\mathbf{X} = \sum \limits_{i} X^{i}\mathbf{x}_{i} is the tangent vector and we have γ(s)=x(γ1(s),γ2(s))\boldsymbol{\gamma}(s) = \mathbf{x}(\gamma^{1}(s), \gamma^{2}(s)). Now, consider the following initial value problem of an ODE system.

(γk)= i,jΓijk(γi)(γj)γi(s0)= 0(γi)(s0)= Xi \begin{align} (\gamma^{k})^{\prime \prime} =&\ -\sum_{i,j}{\Gamma_{ij}}^{k}(\gamma^{i})^{\prime} (\gamma^{j})^{\prime} \\ \gamma^{i}(s_{0}) =&\ 0 \nonumber \\ (\gamma^{i})^{\prime}(s_{0}) =&\ X^{i} \nonumber \end{align}

By Picard’s theorem, there exists a unique solution to this ODE system in some neighborhood of s0s_{0}. Since being a unit-speed curve γ\boldsymbol{\gamma} which satisfies (1)(1) is the necessary and sufficient condition for a geodesic, we only need to check if such γ\boldsymbol{\gamma} is unit-speed.

Let’s say we have f(s)=γ(s)2=i,jgij(γi)(s)(γj)(s)f(s) = \left| \boldsymbol{\gamma}^{\prime}(s) \right|^{2} = \sum\limits_{i,j} g_{ij}(\gamma^{i})^{\prime}(s)(\gamma^{j})^{\prime}(s). To finish the proof, we show that f(s)=1f(s) = 1 holds. By the chain rule, because we have dgijds=kgijuk(γk)\dfrac{d g_{ij}}{d s} = \sum\limits_{k} \dfrac{\partial g_{ij}}{\partial u^{k}}(\gamma^{k})^{\prime},

f(s)=i,j,kgijuk(γk)(γi)(γj)+i,jgij(γi)(γj)+i,jgij(γi)(γj) f^{\prime}(s) = \sum\limits_{i,j,k}\dfrac{\partial g_{ij}}{\partial u^{k}}(\gamma^{k})^{\prime}(\gamma^{i})^{\prime}(\gamma^{j})^{\prime} + \sum\limits_{i,j} g_{ij}(\gamma^{i})^{\prime \prime}(\gamma^{j})^{\prime} + \sum\limits_{i,j} g_{ij}(\gamma^{i})^{\prime}(\gamma^{j})^{\prime \prime}

At this point, considering that we have gijuk=xi,xjuk=xik,xj+xi,xjk\dfrac{\partial g_{ij}}{\partial u^{k}} = \dfrac{\partial \left\langle \mathbf{x}_{i}, \mathbf{x}_{j} \right\rangle}{\partial u^{k}} = \left\langle \mathbf{x}_{ik}, \mathbf{x}_{j} \right\rangle + \left\langle \mathbf{x}_{i}, \mathbf{x}_{jk} \right\rangle and xik,xj=lΓiklglj\left\langle \mathbf{x}_{ik}, \mathbf{x}_{j} \right\rangle = \sum\limits_{l}{\Gamma_{ik}}^{l}g_{lj} is valid, substituting the first term gives us the following.

f(s)= i,j,k,lgliΓjkl(γk)(γi)(γj)+i,j,k,lgljΓikl(γk)(γi)(γj)+i,jgij(γi)(γj)+i,jgij(γi)(γj) \begin{align*} f^{\prime}(s) =&\ \sum\limits_{i,j,k,l}g_{li}{\Gamma_{jk}}^{l}(\gamma^{k})^{\prime}(\gamma^{i})^{\prime}(\gamma^{j})^{\prime} + \sum\limits_{i,j,k,l}g_{lj}{\Gamma_{ik}}^{l}(\gamma^{k})^{\prime}(\gamma^{i})^{\prime}(\gamma^{j})^{\prime}\\ &+ \sum\limits_{i,j} g_{ij}(\gamma^{i})^{\prime \prime}(\gamma^{j})^{\prime} + \sum\limits_{i,j} g_{ij}(\gamma^{i})^{\prime}(\gamma^{j})^{\prime \prime} \end{align*}

Swapping the dummy indices of the third and fourth terms and rearranging gives us the following.

f(s)= i,j,k,lgliΓjkl(γk)(γi)(γj)+i,j,k,lgljΓikl(γk)(γi)(γj)+l,igli(γl)(γi)+j,lgjl(γj)(γl)= i,j,k,lgli[(γl)+Γjkl(γk)(γj)](γi)+i,j,k,lglj[(γl)+Γikl(γk)(γi)](γj) \begin{align*} f^{\prime}(s) =&\ \sum\limits_{i,j,k,l}g_{li}{\Gamma_{jk}}^{l}(\gamma^{k})^{\prime}(\gamma^{i})^{\prime}(\gamma^{j})^{\prime} + \sum\limits_{i,j,k,l}g_{lj}{\Gamma_{ik}}^{l}(\gamma^{k})^{\prime}(\gamma^{i})^{\prime}(\gamma^{j})^{\prime}\\ &+ \sum\limits_{l,i} g_{li}(\gamma^{l})^{\prime \prime}(\gamma^{i})^{\prime} + \sum\limits_{j,l} g_{jl}(\gamma^{j})^{\prime}(\gamma^{l})^{\prime \prime} \\ =&\ \sum\limits_{i,j,k,l}g_{li}\left[ (\gamma^{l})^{\prime \prime} + {\Gamma_{jk}}^{l}(\gamma^{k})^{\prime}(\gamma^{j})^{\prime} \right] (\gamma^{i})^{\prime} + \sum\limits_{i,j,k,l}g_{lj}\left[ (\gamma^{l})^{\prime \prime} + {\Gamma_{ik}}^{l}(\gamma^{k})^{\prime}(\gamma^{i})^{\prime} \right] (\gamma^{j})^{\prime} \end{align*}

At this point, the expressions in each bracket, since γ\boldsymbol{\gamma} satisfies (1)(1), are 00. Therefore, we get f(s)=0f^{\prime}(s) = 0, and since ff is a constant and we assumed X\mathbf{X} is a unit vector,

f(s0)=γ(s0)2=X2=1 f(s_{0}) = \left| \boldsymbol{\gamma}^{\prime}(s_{0}) \right|^{2} = \left| \mathbf{X} \right|^{2} = 1

Thus, f=1f = 1 holds, and γ\boldsymbol{\gamma} is a unit-speed curve.


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p111-112 ↩︎