logo

Basis Addition/Subtraction Theorem 📂Linear Algebra

Basis Addition/Subtraction Theorem

Theorem1

Let SS be a non-empty subset of vector space VV.

(a) If SS is linearly independent and if vV\mathbf{v} \in V equals vspan(S)\mathbf{v} \notin \text{span}(S), then S{v}S \cup \left\{ \mathbf{v} \right\} remains linearly independent.

(b) If vS\mathbf{v} \in S can be represented as a linear combination of other vectors in SS, then SS and S{v}S \setminus \left\{ \mathbf{v} \right\} span the same space. That is, the following holds:

span(S)=span(S{v}) \text{span}(S) = \text{span} \left( S \setminus \left\{ \mathbf{v} \right\} \right)

Proof

(a)

Assume that S={v1,v2,,vr}VS=\left\{ \mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{r} \right\} \subset V is linearly independent and that vspan(S)\mathbf{v} \notin \text{span}(S). To show that S{v}S \cup \left\{ \mathbf{v} \right\} is linearly independent, it suffices to demonstrate that the only solution to the following equation

k1v1+k2v2++krvr+kv=0 \begin{equation} k_{1} \mathbf{v}_{1} + k_{2} \mathbf{v}_{2} + \cdots + k_{r} \mathbf{v}_{r} + k \mathbf{v} = \mathbf{0} \label{eq1} \end{equation}

is k1=k2=kr=k=0k_{1}=k_{2}=k_{r}=k=0.

However, if k0k \ne 0, then kv=i=1rkivispan(S)k \mathbf{v} = -\sum \limits_{i=1}^{r} k_{i} \mathbf{v}_{i} \in \text{span} (S) holds. Therefore, k=0k=0 must be true, leading to the following equation:

k1v1+k2v2++krvr=0 k_{1} \mathbf{v}_{1} + k_{2} \mathbf{v}_{2} + \cdots + k_{r} \mathbf{v}_{r} = \mathbf{0}

Given the assumption that SS is linearly independent, the only solution to this equation is k1=k2=kr=0k_{1}=k_{2}=k_{r}=0. Thus, the only solution for (1)(1) is k1=k2=kr=k=0k_{1}=k_{2}=k_{r}=k=0, proving that S{v}S \cup \left\{ \mathbf{v} \right\} is linearly independent.

(b)

Assuming S={v1,v2,,vr}VS=\left\{ \mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{r} \right\} \subset V and that vr\mathbf{v}_{r} can be expressed as a linear combination of other vectors as follows:

vr=c1v1+c2v2++cr1vr1 \begin{equation} \mathbf{v}_{r} = c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \cdots +c_{r-1}\mathbf{v}_{r-1} \label{eq2} \end{equation}

Now, let wspan(S)\mathbf{w} \in \text{span} (S). According to the definition of spanning, w\mathbf{w} can be expressed as:

w=k1v1+k2v2++kr1vr1+krvr \mathbf{w} = k_{1} \mathbf{v}_{1} + k_{2} \mathbf{v}_{2} + \cdots + k_{r-1} \mathbf{v}_{r-1} + k_{r} \mathbf{v}_{r}

Substituting (2)(2) into the equation above results in:

w=k1v1+k2v2++kr1vr1+krvr=k1v1+k2v2++kr1vr1+kr(c1v1+c2v2++cr1vr1)=(k1+krc1)v1+(k2+krc2)v2++(kr1+krcr1)vr1 \begin{align*} \mathbf{w} &= k_{1} \mathbf{v}_{1} + k_{2} \mathbf{v}_{2} + \cdots + k_{r-1} \mathbf{v}_{r-1} + k_{r} \mathbf{v}_{r} \\ &= k_{1} \mathbf{v}_{1} + k_{2} \mathbf{v}_{2} + \cdots + k_{r-1} \mathbf{v}_{r-1} + k_{r} \left( c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \cdots +c_{r-1}\mathbf{v}_{r-1}\right) \\ &= \left( k_{1} + k_{r}c_{1} \right)\mathbf{v}_{1} + \left( k_{2} + k_{r}c_{2} \right) \mathbf{v}_{2} + \cdots + \left( k_{r-1} + k_{r}c_{r-1} \right) \mathbf{v}_{r-1} \end{align*}

Therefore, wspan(S{v})\mathbf{w} \in \text{span} (S \setminus \left\{ \mathbf{v} \right\}) is true. The converse is also true by the same logic, hence the two sets are identical.

span(S)=span(S{v}) \text{span}(S) = \text{span} \left( S \setminus \left\{ \mathbf{v} \right\} \right)


  1. Howard Anton, Elementary Linear Algebra: Aplications Version (12th Edition, 2019), p250-254 ↩︎