logo

Commutation Relations of the Angular Momentum Operator 📂Quantum Mechanics

Commutation Relations of the Angular Momentum Operator

Formula

The commutation relation of the angular momentum operators is as follows.

[Lj,Lk]=iϵjkL(1) \left[L_{j}, L_{k} \right] = \i \hbar \epsilon_{jk\ell}L_{\ell} \tag{1}

Here, ϵjk\epsilon_{jk\ell} is the Levi-Civita symbol. When written out in full,

[Lx,Ly]=iLz[Ly,Lz]=iLx[Lz,Lx]=iLy \left[ L_{x}, L_{y} \right] = \i \hbar L_{z} \\ \left[ L_{y}, L_{z} \right] = \i \hbar L_{x} \\ \left[ L_{z}, L_{x} \right] = \i \hbar L_{y}

Additionally, L2=Lx2+Ly2+Lz2L^{2} = L_{x}^{2} + L_{y}^{2} + L_{z}^{2} commutes with each component.

[L2,Lx]=[L2,Ly]=[L2,Lz]=0(2) [L^{2}, L_{x}] = [L^{2}, L_{y}] = [L^{2}, L_{z}] = 0 \tag{2}

Explanation

xx and pxp_{x} are, respectively, position operators and momentum operators.

Proof

(1)(1)

Since the subscripts are cyclic, it suffices to compute for [Lx, Ly]\left[ L_{x},\ L_{y} \right].

Properties of Commutators](../297)

[A+B,C]=[A,C]+[B,C] \left[ A + B, C \right] = \left[ A, C \right] + \left[ B, C \right]

From the properties of commutators, we obtain the following.

[Lx,Ly]=[ypzzpy,zpxxpz]=[ypz,zpxxpz][zpy,zpxxpz]=[ypz,zpx][ypz,xpz][zpy,zpx]+[zpy,xpz] \begin{align*} [L_{x},L_{y}] &= [yp_{z}-zp_{y},zp_{x}-xp_{z}] \\ &= [yp_{z},zp_{x}-xp_{z}]- [zp_{y},zp_{x}-xp_{z}] \\ &= [yp_{z},zp_{x}] - [yp_{z},xp_{z}] - [zp_{y},zp_{x}] + [zp_{y},xp_{z}] \tag{1} \end{align*}

Here, different components of position and momentum operators commute.

[x,py]=[x,pz]=[y,px]=[y,pz]=[z,px]=[z,py]=0 [x, p_{y}] = [x, p_{z}] = [y, p_{x}] = [y, p_{z}] = [z, p_{x}] = [z, p_{y}] = 0

Additionally, the commutator of identical operators is also 00. Consequently, when (1)(1) is expanded, only three terms of [x,px], [y,py], [z,pz][x,p_{x}],\ [y,p_{y}],\ [z,p_{z}] have a value different from 00. Therefore, we need to consider only the terms that are not 00. When the first term is expanded, all terms except for y[pz,z]pxy[p_{z},z]p_{x} are 00. When the second term is expanded, all terms are 00. When the third term is expanded, all terms are 00. When the fourth term is expanded, all terms except for x[z,pz]pyx[z,p_{z}]p_{y} are 00. (If you don’t understand, try expanding it yourself.) Hence, we obtain the following.

[Lx,Ly]=y[pz,z]p+x[z,pz]py [L_{x},L_{y}] = y[p_{z},z]p_{+}x[z,p_{z}]p_{y}

Using the position-momentum commutator [x,px]=i[x, p_{x}] = \i\hbar, the calculation proceeds as follows.

[Lx,Ly]=y[pz,z]pxx[z,pz]py=i(ypx)+i(xpy)=i(xpyypx)=iLz \begin{align*} [L_{x},L_{y}] &= y[p_{z},z]p_{x} - x[z,p_{z}]p_{y} \\ &= -\i\hbar (yp_{x}) + \i\hbar (xp_{y}) \\ &= \i \hbar (xp_{y} - yp_{x}) \\ &= \i \hbar L_{z} \end{align*}

By the same logic, we obtain the following.

[Ly,Lz]=iLx,[Lz,Lx]=iLy [L_{y},L_{z}] = \i \hbar L_{x}, \qquad [L_{z}, L_{x}] = \i \hbar L_{y}

(2)(2)

Using the properties of commutators and (1)(1), since [Lz,Lz]=0[L_{z}, L_{z}] = 0, we obtain the following.

[L2,Lz]=[Lx2+Ly2+Lz2,Lz]=[Lx2,Lz]+[Ly2,Lz]+[Lz2,Lz]=Lx[Lx,Lz]+[Lx,Lz]Lx+Ly[Ly,Lz]+[Ly,Lz]Ly=(iLxLy)+(iLyLx)+iLyLz+iLxLy=0 \begin{align*} [L^2, L_{z}] &= [{L_{x}}^2 + {L_{y}}^2 + {L_{z}}^2, L_{z}] \\ &= [{L_{x}}^2,L_{z}] + [{L_{y}}^2, L_{z}] +[{L_{z}^2}, L_{z}] \\ &= L_{x}[L_{x}, L_{z}] + [L_{x}, L_{z}]L_{x} + L_{y}[L_{y}, L_{z}] + [L_{y}, L_{z}]L_{y} \\ &= (-\i\hbar L_{x}L_{y}) + (-\i\hbar L_{y}L_{x}) + \i\hbar L_{y}L_{z} + \i\hbar L_{x}L_{y} \\ &= 0 \end{align*}

Similarly, the following equation holds.

[L2,Lx]=[L2,Ly]=0 [L^2, L_{x}] = [L^2, L_{y}] = 0