logo

Proof of the Hogg-Craig Theorem 📂Mathematical Statistics

Proof of the Hogg-Craig Theorem

Theorem

Let sample X=(X1,,Xn)\mathbf{X} = \left( X_{1} , \cdots , X_{n} \right) follow iid Normal distribution like X1,,XniidN(0,σ2)X_{1} , \cdots , X_{n} \overset{\text{iid}}{\sim} N \left( 0, \sigma^{2} \right). Consider a symmetric matrix A1,,AkRn×nA_{1} , \cdots , A_{k} \in \mathbb{R}^{n \times n} and a random variable Q1,,QkQ_{1} , \cdots , Q_{k} represented as a random vector quadratic form Qi:=XTAiXQ_{i} := \mathbf{X}^{T} A_{i} \mathbf{X}. Define symmetric matrix AA and random variable QQ as follows: A=A1++AkQ=Q1++Qk \begin{align*} A =& A_{1} + \cdots + A_{k} \\ Q =& Q_{1} + \cdots + Q_{k} \end{align*} If Q/σ2Q / \sigma^{2} follows a Chi-squared distribution χ2(r)\chi^{2} \left( r \right) and for i=1,,k1i = 1 , \cdots , k-1 it is Qi/σ2χ2(ri)Q_{i} / \sigma^{2} \sim \chi^{2} \left( r_{i} \right), and Qk0Q_{k} \ge 0 is true, then Q1,,QkQ_{1} , \cdots , Q_{k} is independent, and Qk/σ2Q_{k} / \sigma^{2} follows a Chi-squared distribution with degrees of freedom rk=rr1rk1r_{k} = r - r_{1} - \cdots - r_{k-1} χ2(rk)\chi^{2} \left( r_{k} \right).

Explanation

It might initially seem strange that not Q/nσ2Q / n \sigma^{2} but Q/σ2Q / \sigma^{2} follows a Chi-squared distribution, but it is precise to discuss Q/σ2Q / \sigma^{2} because the addition involved is not of samples, but of a matrix as follows: Q=Q1++Qk=XTA1X++XTAkX=XT(A1++Ak)X=XTAX \begin{align*} Q =& Q_{1} + \cdots + Q_{k} \\ =& \mathbf{X}^{T} A_{1} \mathbf{X} + \cdots + \mathbf{X}^{T} A_{k} \mathbf{X} \\ =& \mathbf{X}^{T} \left( A_{1} + \cdots + A_{k} \right) \mathbf{X} \\ =& \mathbf{X}^{T} A \mathbf{X} \end{align*}

This theorem is used in the proof of Cochran’s theorem.

Proof 1

We will prove it by mathematical induction. First, let k=2k = 2.

Equivalence condition for Chi-squaredness of normal distribution random vector quadratic forms: Let sample X=(X1,,Xn)\mathbf{X} = \left( X_{1} , \cdots , X_{n} \right), and follow iid Normal distribution like X1,,XniidN(0,σ2)X_{1} , \cdots , X_{n} \overset{\text{iid}}{\sim} N \left( 0, \sigma^{2} \right). For a symmetric matrix with rank rnr \le n ARn×nA \in \mathbb{R}^{n \times n}, if we set the random vector quadratic form as Q=σ2XTAXQ = \sigma^{-2} \mathbf{X}^{T} A \mathbf{X}, the following holds. Qχ2(r)    A2=A Q \sim \chi^{2} (r) \iff A^{2} = A

Since Q/σ2Q / \sigma^{2} follows a Chi-squared distribution, AA is an idempotent matrix.

Eigenvalues of an idempotent matrix: The eigenvalues of an idempotent matrix are only 00 or 11.

Since AA is symmetric and a real matrix, it is diagonalizable, and the eigenvalues of AA are only 00 and 11, so there exists an orthogonal matrix which satisfies the following regarding the sizes of identity matrix IrRr×rI_{r} \in \mathbb{R}^{r \times r} and zero matrix OO. ΓTAΓ=[IrOOO] \Gamma^{T} A \Gamma = \begin{bmatrix} I_{r} & O \\ O & O \end{bmatrix}

If you derive A=A1+A2A = A_{1} + A_{2}, it is as follows. [IrOOO]=ΓTA1Γ+ΓTA2Γ \begin{bmatrix} I_{r} & O \\ O & O \end{bmatrix} = \Gamma^{T} A_{1} \Gamma + \Gamma^{T} A_{2} \Gamma

Positive definitiveness and eigenvalues: The necessary and sufficient condition for AA to be positive definite is that all eigenvalues of AA are positive.

Since it was assumed Q20Q_{2} \ge 0, the matrix A2A_{2} is positive semidefinite, and since AA and A1A_{1} are idempotent, the eigenvalues are only 00 and 11, so they are also positive semidefinite according to the equivalence condition of semidefiniteness. Naturally, ΓTAΓ\Gamma^{T} A \Gamma, ΓTA1Γ\Gamma^{T} A_{1} \Gamma, and ΓTA2Γ\Gamma^{T} A_{2} \Gamma, which have orthogonal matrices multiplied on the front and back, are also positive semidefinite.

Properties of diagonal elements of positive definite matrices: Given a positive definite matrix A=(aij)Cn×nA = \left( a_{ij} \right) \in \mathbb{C}^{n \times n}. The sign of diagonal elements aiia_{ii} of AA is the same as the sign of AA. Suppose a symmetric matrix ARn×nA \in \mathbb{R}^{n \times n} made up of real numbers is positive semidefinite.

When a positive semidefinite matrix is composed of real numbers and has symmetry, if any among the diagonal elements is 00, all rows and columns of that element would be 00. According to this, the following expression is possible for certain GrRr×rG_{r} \in \mathbb{R}^{r \times r} and HrRr×rH_{r} \in \mathbb{R}^{r \times r}. ΓTAΓ=ΓTA1Γ+ΓTA2Γ    [IrOOO]=[GrOOO]+[HrOOO] \begin{align*} \Gamma^{T} A \Gamma = & \Gamma^{T} A_{1} \Gamma + \Gamma^{T} A_{2} \Gamma \\ \implies \begin{bmatrix} I_{r} & O \\ O & O \end{bmatrix} =& \begin{bmatrix} G_{r} & O \\ O & O \end{bmatrix} + \begin{bmatrix} H_{r} & O \\ O & O \end{bmatrix} \end{align*}

Since Q1/σ2χ2(r1)Q_{1} / \sigma^{2} \sim \chi^{2} \left( r_{1} \right), A1A_{1} is also an idempotent matrix, and the following is obtained. (ΓTA1Γ)2=ΓTA1Γ=[GrOOO] \left( \Gamma^{T} A_{1} \Gamma \right)^{2} = \Gamma^{T} A_{1} \Gamma = \begin{bmatrix} G_{r} & O \\ O & O \end{bmatrix} Multiplying both sides of ΓTAΓ=ΓTA1Γ+ΓTA2Γ\Gamma^{T} A \Gamma = \Gamma^{T} A_{1} \Gamma + \Gamma^{T} A_{2} \Gamma by ΓTA1Γ\Gamma^{T} A_{1} \Gamma results in the following: [IrOOO]=[GrOOO]+[HrOOO]    [IrOOO]ΓTA1Γ=ΓTA1ΓΓTA1Γ+[HrOOO]ΓTA1Γ    [IrOOO][GrOOO]=ΓTA1Γ+[HrOOO][GrOOO]    [GrOOO]=[GrOOO]+[GrHrOOO]    [OOOO]=[GrHrOOO]    GrHr=O    ΓTA1ΓΓTA2Γ=O    A1A2=O \begin{align*} \begin{bmatrix} I_{r} & O \\ O & O \end{bmatrix} =& \begin{bmatrix} G_{r} & O \\ O & O \end{bmatrix} + \begin{bmatrix} H_{r} & O \\ O & O \end{bmatrix} \\ \implies \begin{bmatrix} I_{r} & O \\ O & O \end{bmatrix} \Gamma^{T} A_{1} \Gamma =& \Gamma^{T} A_{1} \Gamma \cdot \Gamma^{T} A_{1} \Gamma + \begin{bmatrix} H_{r} & O \\ O & O \end{bmatrix} \Gamma^{T} A_{1} \Gamma \\ \implies \begin{bmatrix} I_{r} & O \\ O & O \end{bmatrix} \begin{bmatrix} G_{r} & O \\ O & O \end{bmatrix} =& \Gamma^{T} A_{1} \Gamma + \begin{bmatrix} H_{r} & O \\ O & O \end{bmatrix} \begin{bmatrix} G_{r} & O \\ O & O \end{bmatrix} \\ \implies \begin{bmatrix} G_{r} & O \\ O & O \end{bmatrix} =& \begin{bmatrix} G_{r} & O \\ O & O \end{bmatrix} + \begin{bmatrix} G_{r} H_{r} & O \\ O & O \end{bmatrix} \\ \implies \begin{bmatrix} O & O \\ O & O \end{bmatrix} =& \begin{bmatrix} G_{r} H_{r} & O \\ O & O \end{bmatrix} \\ \implies G_{r} H_{r} =& O \\ \implies \Gamma^{T} A_{1} \Gamma \Gamma^{T} A_{2} \Gamma =& O \\ \implies A_{1} A_{2} =& O \end{align*}

Craig’s theorem: Let sample X=(X1,,Xn)\mathbf{X} = \left( X_{1} , \cdots , X_{n} \right) follow iid Normal distribution like X1,,XniidN(0,σ2)X_{1} , \cdots , X_{n} \overset{\text{iid}}{\sim} N \left( 0, \sigma^{2} \right). For a symmetric matrix A,BRn×nA, B \in \mathbb{R}^{n \times n}, if random variables Q1Q_{1} and Q2Q_{2} are defined as random vector quadratic forms Q1:=σ2XTAXQ_{1} := \sigma^{-2} \mathbf{X}^{T} A \mathbf{X} and Q2:=σ2XTBXQ_{2} := \sigma^{-2} \mathbf{X}^{T} B \mathbf{X}, the following holds. Q1Q2    AB=On Q_{1} \perp Q_{2} \iff A B = O_{n}

Addition of random variables: Xiχ2(ri)X_i \sim \chi^2 ( r_{i} ) then i=1nXiχ2(i=1nri) \sum_{i=1}^{n} X_{i} \sim \chi ^2 \left( \sum_{i=1}^{n} r_{i} \right)

According to Craig’s theorem, Q1Q_{1} and Q2Q_{2} are independent, and Q2Q_{2} follows a Chi-squared distribution with degrees of freedom (rr1)\left( r - r_{1} \right).


It suffices to show that it holds for k=3k = 3. Suppose A3A_{3} is a positive semidefinite matrix satisfying the following: A=A1+(A2+A3)=A1+B1 A = A_{1} + \left( A_{2} + A_{3} \right) = A_{1} + B_{1} By factoring B1:=A2+A3B_{1} := A_{2} + A_{3}, B1B_{1} is still a positive semidefinite matrix, and if we apply the result when k=2k = 2 to A=A1+B1A = A_{1} + B_{1}, we obtain A1B1=OA_{1} B_{1} = O as follows: A=A2=(A1+B1)2=A12+A1B1+B1A1+B12=A1+O+B12    B12=AA1=B1 \begin{align*} A = A^{2} =& \left( A_{1} + B_{1} \right)^{2} \\ =& A_{1}^{2} + A_{1} B_{1} + B_{1} A_{1} + B_{1}^{2} \\ =& A_{1} + O + B_{1}^{2} \\ \implies B_{1}^{2} =& A - A_{1} = B_{1} \end{align*} On the other hand, applying the result when k=2k = 2 to B1=A2+A3B_{1} = A_{2} + A_{3} itself gives A2A3=OA_{2} A_{3} = O and A32=A3A_{3}^{2} = A_{3}. Repeating this factoring process for B1B_{1} applied to A=A2+(A1+A3)A = A_{2} + \left( A_{1} + A_{3} \right) gives A1A3=OA_{1} A_{3} = O, and continuing this completes the proof.


  1. Hogg et al. (2018). Introduction to Mathematical Statistcs(8th Edition): p564. ↩︎