logo

The Moment Generating Function of a Quadratic Form of a Normally Distributed Random Vector 📂Mathematical Statistics

The Moment Generating Function of a Quadratic Form of a Normally Distributed Random Vector

Theorem

Let Sample X=(X1,,Xn)\mathbf{X} = \left( X_{1} , \cdots , X_{n} \right) be iid following a Normal Distribution such as X1,,XniidN(0,σ2)X_{1} , \cdots , X_{n} \overset{\text{iid}}{\sim} N \left( 0, \sigma^{2} \right). Consider a Symmetric Matrix ARn×nA \in \mathbb{R}^{n \times n} with Rank rnr \le n. The Moment Generating Function of the Quadratic Form of a Random Vector Q=σ2XTAXQ = \sigma^{-2} \mathbf{X}^{T} A \mathbf{X} is expressed as follows: MQ(t)=i=1r(12tλi)1/2=det(In2tA)1/2,t<1/2λ1 M_{Q} (t) = \prod_{i=1}^{r} \left( 1 - 2 t \lambda_{i} \right)^{-1/2} = \det \left( I_{n} - 2 t A \right)^{-1/2} \qquad , | t | < 1 / 2 \lambda_{1} where InRn×nI_{n} \in \mathbb{R}^{n \times n} is the Identity Matrix and det\det is the Determinant. The values λ1λr\lambda_{1} \ge \cdots \ge \lambda_{r} are the Eigenvalues of AA, arranged in descending order without loss of generality, excluding 00.

Description

This theorem is utilized in the Proof of the Hogg-Craig Theorem.

Proof 1

Let nn-dimensional Zero Vector be denoted as 0n\mathbf{0}_{n}.

Spectral Decomposition: In Spectral Theory, A=QΛQA = Q \Lambda Q^{\ast} is expressed in terms of a summation of Eigenpairs {(λk,ek)}k=1n\left\{ \left( \lambda_{k} , e_{k} \right) \right\}_{k=1}^{n} as follows: A=k=1nλkekek A = \sum_{k=1}^{n} \lambda_{k} e_{k} e_{k}^{\ast}

Since AA is a Symmetric Matrix, QQ can be represented via spectral decomposition as follows: Q=σ2XTAX=σ2XTi=1nλieieiTX=i=1rλi(XTeiσ1)(σ1eiTX)=i=1rλi(σ1eiTX)T(σ1eiTX)=i=1rλi(σ1eiTX)2 \begin{align*} Q =& \sigma^{-2} \mathbf{X}^{T} A \mathbf{X} \\ =& \sigma^{-2} \mathbf{X}^{T} \sum_{i=1}^{n} \lambda_{i} e_{i} e_{i}^{T} \mathbf{X} \\ =& \sum_{i=1}^{r} \lambda_{i} \left( \mathbf{X}^{T} e_{i} \sigma^{-1} \right) \left( \sigma^{-1} e_{i}^{T} \mathbf{X} \right) \\ =& \sum_{i=1}^{r} \lambda_{i} \left( \sigma^{-1} e_{i}^{T} \mathbf{X} \right)^{T} \left( \sigma^{-1} e_{i}^{T} \mathbf{X} \right) \\ =& \sum_{i=1}^{r} \lambda_{i} \left( \sigma^{-1} e_{i}^{T} \mathbf{X} \right)^{2} \end{align*} Let Γ1:=(e1T,,erT)Rr×n\Gamma_{1} := \left( e_{1}^{T} , \cdots , e_{r}^{T} \right) \in \mathbb{R}^{r \times n}, and if we consider the Random Vector W\mathbf{W} to be W=σ1Γ1X\mathbf{W} = \sigma^{-1} \Gamma_{1} \mathbf{X}, then W=(W1,,Wr)\mathbf{W} = \left( W_{1} , \cdots , W_{r} \right) becomes a rr-dimensional random vector. [W1Wr]=W=σ1Γ1X=[σ1e1TXσ1enTX] \begin{bmatrix} W_{1} \\ \vdots \\ W_{r} \end{bmatrix} = \mathbf{W} = \sigma^{-1} \Gamma_{1} \mathbf{X} = \begin{bmatrix} \sigma^{-1} e_{1}^{T} \mathbf{X} \\ \vdots \\ \sigma^{-1} e_{n}^{T} \mathbf{X} \end{bmatrix} Therefore, QQ can be expressed as follows: Q=i=1rλi(σ1eiTX)2=i=1rλiWi2 Q = \sum_{i=1}^{r} \lambda_{i} \left( \sigma^{-1} e_{i}^{T} \mathbf{X} \right)^{2} = \sum_{i=1}^{r} \lambda_{i} W_{i}^{2}

Since each component of the random vector X\mathbf{X} follows the normal distribution N(0,σ2)N \left( 0 , \sigma^{2} \right), X\mathbf{X} follows a Multivariate Normal Distribution Nn(0n,σ2In)N_{n} \left( \mathbf{0}_{n} , \sigma^{2} I_{n} \right) and it inherently follows from the definition of Γ1\Gamma_{1} that it is Γ1Γ1T=Ir\Gamma_{1} \Gamma_{1}^{T} = I_{r}.

Normality of Linear Transformations of Multivariate Normal Distributions: Given a Matrix ARm×nA \in \mathbb{R}^{m \times n} and a Vector bRm\mathbf{b} \in \mathbb{R}^{m}, the Linear Transformation Y=AX+b\mathbf{Y} = A \mathbf{X} + \mathbf{b} of a Random Vector following a Multivariate Normal Distribution still follows a multivariate normal distribution Nm(Aμ+b,AΣAT)N_{m} \left( A \mu + \mathbf{b} , A \Sigma A^{T} \right).

By the Normality of Linear Transformations of Multivariate Normal Distributions, W\mathbf{W} is found to follow the rr-dimensional multivariate normal distribution Nr(0r,Ir)N_{r} \left( \mathbf{0}_{r} , I_{r} \right) as follows: W=σ1Γ1X+0r    WNr(σ1Γ10n+0r,(σ1Γ1)(σ2In)(σ1Γ1)T)    WNr(0r+0r,Γ1InΓ1T)    WNr(0r,Ir) \begin{align*} \mathbf{W} =& \sigma^{-1} \Gamma_{1} \mathbf{X} + \mathbf{0}_{r} \\ \implies \mathbf{W} \sim & N_{r} \left( \sigma^{-1} \Gamma_{1} \mathbf{0}_{n} + \mathbf{0}_{r} , \left( \sigma^{-1} \Gamma_{1} \right) \left( \sigma^{2} I_{n} \right) \left( \sigma^{-1} \Gamma_{1} \right)^{T} \right) \\ \implies \mathbf{W} \sim & N_{r} \left( \mathbf{0}_{r} + \mathbf{0}_{r} , \Gamma_{1} I_{n} \Gamma_{1}^{T} \right) \\ \implies \mathbf{W} \sim & N_{r} \left( \mathbf{0}_{r} , I_{r} \right) \end{align*}

Derivation of the Chi-Squared Distribution in Standard Normal Distribution: If XN(μ,σ2)X \sim N(\mu,\sigma ^2), V=(Xμσ)2χ2(1) V=\left( { X - \mu \over \sigma} \right) ^2 \sim \chi ^2 (1)

This indicates that the components W1,,WrW_{1} , \cdots , W_{r} of W\mathbf{W} are all iid following a Standard Normal Distribution, and Wi2W_{i}^{2} follows a Chi-Squared Distribution χ2(1)\chi^{2} (1).

Moment Generating Function of the Chi-Squared Distribution: The Moment Generating Function of a random variable following a chi-squared distribution with Degrees of Freedom rr is expressed as follows: m(t)=(12t)r/2,t<12m(t) = (1-2t)^{-r/2} \qquad , t < {{ 1 } \over { 2 }}

Therefore, since QQ is a Linear Combination of Random Variables following a chi-squared distribution, its Moment Generating Function is as follows: MQ(t)=E[exp(tQ)]=E[texp(i=1rλiWi2)]=i=1rE[exp(tλiWi2)]=i=1r(12tλi)1/2,t<1/2λ1 \begin{align*} & M_{Q} (t) \\ =& E \left[ \exp \left( t Q \right) \right] \\ =& E \left[ t \exp \left( \sum_{i=1}^{r} \lambda_{i} W_{i}^{2} \right) \right] \\ =& \prod_{i=1}^{r} E \left[ \exp \left( t \lambda_{i} W_{i}^{2} \right) \right] \\ =& \prod_{i=1}^{r} \left( 1 - 2 t \lambda_{i} \right)^{-1/2} \qquad , | t | < 1 / 2 \lambda_{1} \end{align*}

Properties of Orthogonal Matrices: The determinant of an orthogonal matrix is either 11 or 1-1.

Finally, the determinant of the orthogonal matrix Γ1\Gamma_{1} is ±1\pm 1, 1=detIn=detΓ1TdetΓ1 1 = \det I_{n} = \det \Gamma_{1}^{T} \det \Gamma_{1} thus, whether 11 or 1-1, the determinants of Γ1\Gamma_{1} and Γ1T\Gamma_{1}^{T} are congruent in sign. By obtaining the determinant of In2tAI_{n} - 2 t A, an alternative form of MQ(t)M_{Q} (t) can be derived. det(In2tA)=det(Γ1TΓ2tΓ1TΛΓ1)=det(Γ1T(In2tΛ)Γ1)=detΓ1Tdet(In2tΛ)detΓ1=(±1)det(In2tΛ)(±1)=det(In2tΛ)=det[12tλ100012tλ20001]=i=1r(12tλi)=[i=1r(12tλi)1/2]2 \begin{align*} & \det \left( I_{n} - 2 t A \right) \\ =& \det \left( \Gamma_{1}^{T} \Gamma - 2 t \Gamma_{1}^{T} \Lambda \Gamma_{1} \right) \\ =& \det \left( \Gamma_{1}^{T} \left( I_{n} - 2 t \Lambda \right) \Gamma_{1} \right) \\ =& \det \Gamma_{1}^{T} \det \left( I_{n} - 2 t \Lambda \right) \det \Gamma_{1} \\ =& \left( \pm 1 \right) \cdot \det \left( I_{n} - 2 t \Lambda \right) \cdot \left( \pm 1 \right) \\ =& \det \left( I_{n} - 2 t \Lambda \right) \\ =& \det \begin{bmatrix} 1 - 2 t \lambda_{1} & 0 & \cdots & 0 \\ 0 & 1 - 2 t \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \\ =& \prod_{i=1}^{r} \left( 1 - 2 t \lambda_{i} \right) \\ =& \left[ \prod_{i=1}^{r} \left( 1 - 2 t \lambda_{i} \right)^{-1/2} \right]^{-2} \end{align*} The proof is concluded by raising both sides to the power 2-2. det(In2tA)1/2=i=1r(12tλi)1/2 \det \left( I_{n} - 2 t A \right)^{-1/2} = \prod_{i=1}^{r} \left( 1 - 2 t \lambda_{i} \right)^{-1/2}


  1. Hogg et al. (2018). Introduction to Mathematical Statistcs(8th Edition): p557~558. ↩︎