Spectral Decomposition: In Spectral Theory, A=QΛQ∗ is expressed in terms of a summation of Eigenpairs{(λk,ek)}k=1n as follows:
A=k=1∑nλkekek∗
Since A is a Symmetric Matrix, Q can be represented via spectral decomposition as follows:
Q=====σ−2XTAXσ−2XTi=1∑nλieieiTXi=1∑rλi(XTeiσ−1)(σ−1eiTX)i=1∑rλi(σ−1eiTX)T(σ−1eiTX)i=1∑rλi(σ−1eiTX)2
Let Γ1:=(e1T,⋯,erT)∈Rr×n, and if we consider the Random VectorW to be W=σ−1Γ1X, then W=(W1,⋯,Wr) becomes a r-dimensional random vector.
W1⋮Wr=W=σ−1Γ1X=σ−1e1TX⋮σ−1enTX
Therefore, Q can be expressed as follows:
Q=i=1∑rλi(σ−1eiTX)2=i=1∑rλiWi2
Since each component of the random vector X follows the normal distribution N(0,σ2), X follows a Multivariate Normal DistributionNn(0n,σ2In) and it inherently follows from the definition of Γ1 that it is Γ1Γ1T=Ir.
By the Normality of Linear Transformations of Multivariate Normal Distributions, W is found to follow the r-dimensional multivariate normal distribution Nr(0r,Ir) as follows:
W=⟹W∼⟹W∼⟹W∼σ−1Γ1X+0rNr(σ−1Γ10n+0r,(σ−1Γ1)(σ2In)(σ−1Γ1)T)Nr(0r+0r,Γ1InΓ1T)Nr(0r,Ir)
Derivation of the Chi-Squared Distribution in Standard Normal Distribution: If X∼N(μ,σ2),
V=(σX−μ)2∼χ2(1)
Moment Generating Function of the Chi-Squared Distribution: The Moment Generating Function of a random variable following a chi-squared distribution with Degrees of Freedomr is expressed as follows:
m(t)=(1−2t)−r/2,t<21
Therefore, since Q is a Linear Combination of Random Variables following a chi-squared distribution, its Moment Generating Function is as follows:
====MQ(t)E[exp(tQ)]E[texp(i=1∑rλiWi2)]i=1∏rE[exp(tλiWi2)]i=1∏r(1−2tλi)−1/2,∣t∣<1/2λ1
Properties of Orthogonal Matrices: The determinant of an orthogonal matrix is either 1 or −1.
Finally, the determinant of the orthogonal matrix Γ1 is ±1,
1=detIn=detΓ1TdetΓ1
thus, whether 1 or −1, the determinants of Γ1 and Γ1T are congruent in sign. By obtaining the determinant of In−2tA, an alternative form of MQ(t) can be derived.
========det(In−2tA)det(Γ1TΓ−2tΓ1TΛΓ1)det(Γ1T(In−2tΛ)Γ1)detΓ1Tdet(In−2tΛ)detΓ1(±1)⋅det(In−2tΛ)⋅(±1)det(In−2tΛ)det1−2tλ10⋮001−2tλ2⋮0⋯⋯⋱⋯00⋮1i=1∏r(1−2tλi)[i=1∏r(1−2tλi)−1/2]−2
The proof is concluded by raising both sides to the power −2.
det(In−2tA)−1/2=i=1∏r(1−2tλi)−1/2
■
Hogg et al. (2018). Introduction to Mathematical Statistcs(8th Edition): p557~558. ↩︎