logo

Expected Value of the Quadratic Form of a Random Vector 📂Mathematical Statistics

Expected Value of the Quadratic Form of a Random Vector

Formula

Let the population mean vector μRn\mu \in \mathbb{R}^{n} and the covariance matrix ΣRn×n\Sigma \in \mathbb{R}^{n \times n} be given such that the random vector X\mathbf{X} is X(μ,Σ)\mathbf{X} \sim \left( \mu , \Sigma \right). For a symmetric matrix AA, the expected value of the quadratic form of a random vector is as follows. E(Q)=trAΣ+μTAμ E (Q) = \operatorname{tr} A \Sigma + \mu^{T} A \mu Here, μT\mu^{T} is the transpose matrix of μ\mu, and tr\operatorname{tr} is the trace.

Derivation 1

Cyclic property of the trace: tr(ABC)=tr(BCA)=tr(CAB) \operatorname{tr} (ABC) = \operatorname{tr} (BCA) = \operatorname{tr} (CAB)

Expectation and trace of a random vector: E(tr(X))=tr(E(X))E(\tr(\mathbf{X})) = \tr(E(\mathbf{X}))

Covariance matrix: Given as μRp\mathbf{\mu} \in \mathbb{R}^{p} is μ:=(EX1,,EXp)\mathbf{\mu} := \left( EX_{1} , \cdots , EX_{p} \right) Cov(X)=E[XXT]μμT \operatorname{Cov} (\mathbf{X}) = E \left[ \mathbf{X} \mathbf{X}^{T} \right] - \mathbf{\mu} \mathbf{\mu}^{T}

E(Q)=E(trXTAX)=E(trAXXT)=trAE(XXT)=trA(Σ+μμT)=trAΣ+trAμμT=trAΣ+trμTAμ=trAΣ+μTAμ \begin{align*} & E (Q) \\ =& E \left( \operatorname{tr} \mathbf{X}^{T} A \mathbf{X} \right) \\ =& E \left( \operatorname{tr} A \mathbf{X} \mathbf{X}^{T} \right) \\ =& \operatorname{tr} A E \left( \mathbf{X} \mathbf{X}^{T} \right) \\ =& \operatorname{tr} A \left( \Sigma + \mu \mu^{T} \right) \\ =& \operatorname{tr} A \Sigma + \operatorname{tr} A \mu \mu^{T} \\ =& \operatorname{tr} A \Sigma + \operatorname{tr} \mu^{T} A \mu \\ =& \operatorname{tr} A \Sigma + \mu^{T} A \mu \end{align*}


  1. Hogg et al. (2018). Introduction to Mathematical Statistcs(8th Edition): p556. ↩︎