logo

Linear Transformations of Multivariate Normal Distributions 📂Probability Distribution

Linear Transformations of Multivariate Normal Distributions

정리 1

Linear Transformations’ Normality

Regarding matrix ARm×nA \in \mathbb{R}^{m \times n} and vector bRm\mathbf{b} \in \mathbb{R}^{m}, a random vector XNn(μ,Σ)\mathbf{X} \sim N_{n} \left( \mu , \Sigma \right) following a multivariate normal distribution undergoes a linear transformation Y=AX+b\mathbf{Y} = A \mathbf{X} + \mathbf{b} will still follow a multivariate normal distribution Nm(Aμ+b,AΣAT)N_{m} \left( A \mu + \mathbf{b} , A \Sigma A^{T} \right).

Normality of Marginal Distributions

X=[X1X2]:ΩRnμ=[μ1μ2]RnΣ=[Σ11Σ12Σ21Σ22]Rn×n \begin{align*} \mathbf{X} =& \begin{bmatrix} \mathbf{X}_{1} \\ \mathbf{X}_{2} \end{bmatrix} & : \Omega \to \mathbb{R}^{n} \\ \mu =& \begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix} & \in \mathbb{R}^{n} \\ \Sigma =& \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} & \in \mathbb{R}^{n \times n} \end{align*} Assuming X\mathbf{X}, μ\mu, and Σ\Sigma are represented in Jordan block form, if XNn(μ,Σ)\mathbf{X} \sim N_{n} \left( \mu, \Sigma \right) holds, then one of the marginal random vectors, X1X_{1}, follows a multivariate normal distribution Nm(μ1,Σ11)N_{m} \left( \mu_{1} , \Sigma_{11} \right).

Proof

Linear Transformation

Moment Generating Function of Multivariate Normal Distribution: The moment generating function of XNp(μ,Σ)X \sim N_{p} \left( \mu , \Sigma \right) is as follows. MX(t)=exp(tTμ+12tTΣt),tRp M_{X} \left( \mathbf{t} \right) = \exp \left( \mathbf{t}^{T} \mu + {{ 1 } \over { 2 }} \mathbf{t}^{T} \Sigma \mathbf{t} \right) \qquad , \mathbf{t} \in \mathbb{R}^{p}

It is directly deduced from the moment generating function of the multivariate normal distribution. The moment generating function of Y\mathbf{Y} is as follows. MY(t)=E[exp(tTY)]=E[exp(tT(AX+b))]=E[exp(tTb)]E[exp(tTAX)]=exp(tTb)E[exp((ATt)TX)]=exp(tTb)exp((ATt)T(μ+12ΣATt))=exp(tTb)exp((ATt)Tμ+12(tTAΣATt))=exp(tT(b+Aμ)+12(tTAΣATt)) \begin{align*} M_{\mathbf{Y}} \left( \mathbf{t} \right) =& E \left[ \exp \left( \mathbf{t}^{T} \mathbf{Y} \right) \right] \\ =& E \left[ \exp \left( \mathbf{t}^{T} \left( A \mathbf{X} + \mathbf{b} \right) \right) \right] \\ =& E \left[ \exp \left( \mathbf{t}^{T} \mathbf{b} \right) \right] E \left[ \exp \left( \mathbf{t}^{T} A \mathbf{X} \right) \right] \\ =& \exp \left( \mathbf{t}^{T} \mathbf{b} \right) E \left[ \exp \left( \left( A^{T} \mathbf{t} \right) ^{T} \mathbf{X} \right) \right] \\ =& \exp \left( \mathbf{t}^{T} \mathbf{b} \right) \exp \left( \left( A^{T} \mathbf{t} \right) ^{T} \left( \mu + {{ 1 } \over { 2 }} \Sigma A^{T} \mathbf{t} \right) \right) \\ =& \exp \left( \mathbf{t}^{T} \mathbf{b} \right) \exp \left( \left( A^{T} \mathbf{t} \right) ^{T} \mu + {{ 1 } \over { 2 }} \left( \mathbf{t}^{T} A \Sigma A^{T} \mathbf{t} \right) \right) \\ =& \exp \left( \mathbf{t}^{T} \left( \mathbf{b} + A \mu \right) + {{ 1 } \over { 2 }} \left( \mathbf{t}^{T} A \Sigma A^{T} \mathbf{t} \right) \right) \end{align*}

This is identical to the moment generating function of Nm(Aμ+b,AΣAT)N_{m} \left( A \mu + \mathbf{b} , A \Sigma A^{T} \right).

Marginal Distribution

It is a trivial corollary of the above theorem. With respect to the identity matrix ImRm×mI_{m} \in \mathbb{R}^{m \times m} and zero matrix Om(nm)Rm×(nm)O_{m(n-m)} \in \mathbb{R}^{m \times (n-m)}, if matrix ARm×nA \in \mathbb{R}^{m \times n} is defined as A=[ImOm(nm)] A = \begin{bmatrix} I_{m} & O_{m(n-m)} \end{bmatrix} then naturally X1=AX \mathbf{X}_{1} = A \mathbf{X} This mapping that omits some components of the vector is also referred to as natural projection.


  1. Hogg et al. (2013). Introduction to Mathematical Statistcs(7th Edition): p183. ↩︎