logo

Poker-Plank Equation Derivation 📂Stochastic Differential Equations

Poker-Plank Equation Derivation

Theorem

dXt=f(t,Xt)dt+g(t,Xt)dWt,t[t0,T] d X_{t} = f \left( t, X_{t} \right) dt + g \left( t , X_{t} \right) d W_{t} \qquad , t \in \left[ t_{0} , T \right] Given a stochastic differential equation as above, and let FC0(R)F \in C_{0}^{\infty} \left( \mathbb{R} \right). Then, at time point tt, the probability density function p(t,x)p(t,x) of XtX_{t} follows the next partial differential equation. p(t,x)t=[p(t,x)f(t,x)]x+122[p(t,x)(g(t,x))2]x2 {{ \partial p(t,x) } \over { \partial t }} = - {{ \partial \left[ p(t,x) f(t,x) \right] } \over { \partial x }} + {{ 1 } \over { 2 }} {{ \partial^{2} \left[ p(t,x) \left( g(t,x) \right)^{2} \right] } \over { \partial x^{2} }}


Explanation

Note that what is described in the equation is not XtX_{t} itself, but its probability distribution.

Especially if f=0f = 0, it is a heat equation.

Derivation

X=Xtf=f(t,Xt)g=g(t,Xt)g2=[g(t,Xt)]2 \begin{align*} X =& X_{t} \\ f =& f \left( t, X_{t} \right) \\ g =& g \left( t, X_{t} \right) \\ g^{2} =& \left[ g \left( t, X_{t} \right) \right]^{2} \end{align*}

For convenience, allow the notation above, and let’s use the following widely used partial differential notation. Fx=Fx F_{x} = {{ \partial F } \over { \partial x }}

Part 1.

  • Itô’s lemma: dYt=(Vt+Vxu+12Vxxv2)dt+VxvdWt dY_{t} = \left( V_{t} + V_{x} u + {{ 1 } \over { 2 }} V_{xx} v^{2} \right) dt + V_{x} v d W_{t}
  • [6] Expected value of Itô integral: E[abfdWt]=0 E \left[ \int_{a}^{b} f d W_{t} \right] = 0

According to Itô’s lemma, calculating dF(X)d F \left( X \right) results in an integral, namely the expected value of Itô integral ()(\star), dF(X)=(fFx+12g2Fxx)dt+gFxdWs    0tdF(X)=0t(fFx+12g2Fxx)dt+0tgFxdWs    E(F(X))=E0t(fFx+12g2Fxx)ds+0    dE(F)dt=E[fFx+12g2Fxx] \begin{align*} & d F \left( X \right) = \left( f F_{x} + {{ 1 } \over { 2 }} g^{2} F_{xx} \right) dt + g F_{x} d W_{s} \\ \implies & \int_{0}^{t} d F \left( X \right) = \int_{0}^{t} \left( f F_{x} + {{ 1 } \over { 2 }} g^{2} F_{xx} \right) dt + \int_{0}^{t} g F_{x} d W_{s} \\ \implies & E \left( F(X) \right) = E \int_{0}^{t} \left( f F_{x} + {{ 1 } \over { 2 }} g^{2} F_{xx} \right) ds + 0 & \because \star \\ \implies & {{ d E (F) } \over { dt }} = E \left[ f F_{x} + {{ 1 } \over { 2 }} g^{2} F_{xx} \right] \end{align*}


Part 2. The emergence of p(t,x)p (t,x)

Meanwhile, the expected value of F(X)F(X) can be represented as Rp(t,x)F(x)dx\int_{\mathbb{R}} p(t,x) F(x) dx regarding the probability density function p(t,x)p (t,x) of XtX_{t} at time point tt, ddtE(F)=E[fFx+12g2Fxx]    ddtp(t,x)F(x)dx=p(t,x)[fFx+12g2Fxx]dx \begin{align*} {{ d } \over { dt } } E (F) =& E \left[ f F_{x} + {{ 1 } \over { 2 }} g^{2} F_{xx} \right] \\ \implies {{ d } \over { dt }} \int_{-\infty}^{\infty} p(t,x) F(x) dx =& \int_{-\infty}^{\infty} p(t,x)\left[ {\color{red} f F_{x}} + {\color{blue} {{ 1 } \over { 2 }} g^{2} F_{xx} } \right] dx \end{align*} Now, let’s calculate the right side one by one through integration by parts.


Part 3. Integration by Parts

p(t,±)=0p \left( t,\pm \infty \right) = 0. The first term p(t,x)fFxdx{\color{red} \int_{-\infty}^{\infty} p(t,x) f F_{x} dx} is p(t,x)fFxdx=[p(t,x)fF(x)][p(t,x)f]xF(x)dx=00[p(t,x)f]xF(x)dx \begin{align*} & \int_{-\infty}^{\infty} p(t,x) f F_{x} dx \\ =& \left[ p (t,x) f \cdot F(x) \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} {{ \partial \left[ p (t,x) f \right] } \over { \partial x }} F(x) dx \\ =& 0 - 0 - \int_{-\infty}^{\infty} {{ \partial \left[ p (t,x) f \right] } \over { \partial x }} F (x) dx \end{align*} According to the assumption that FC0(R)F \in C_{0}^{\infty} \left( \mathbb{R} \right), F(±)=0F \left( \pm \infty \right) = 0. The second term, p(t,x)12g2Fxxdx{\color{blue} \int_{-\infty}^{\infty} p(t,x) {{ 1 } \over { 2 }} g^{2} F_{xx} dx}, is obtained by doing integration by parts twice, p(t,x)12g2Fxxdx=[p(t,x)12g2Fx(x)]12[p(t,x)g2]xFx(x)dx=0012[p(t,x)g2]xFx(x)dx=12[[p(t,x)g2]xF(x)]+122[p(t,x)g2]x2F(x)dx=0+0+122[p(t,x)g2]x2F(x)dx \begin{align*} & \int_{-\infty}^{\infty} p(t,x) {{ 1 } \over { 2 }} g^{2} F_{xx} dx \\ =& \left[ p (t,x) {{ 1 } \over { 2 }} g^{2} \cdot F_{x} (x) \right]_{-\infty}^{\infty} - {{ 1 } \over { 2 }} \int_{-\infty}^{\infty} {{ \partial \left[ p (t,x) g^{2} \right] } \over { \partial x }} F_{x} (x) dx \\ =& 0 - 0 - {{ 1 } \over { 2 }} \int_{-\infty}^{\infty} {{ \partial \left[ p (t,x) g^{2} \right] } \over { \partial x }} F_{x} (x) dx \\ =& - {{ 1 } \over { 2 }} \left[ {{ \partial \left[ p (t,x) g^{2} \right] } \over { \partial x }} F (x) \right]_{-\infty}^{\infty} + {{ 1 } \over { 2 }} \int_{-\infty}^{\infty} {{ \partial^{2} \left[ p (t,x) g^{2} \right] } \over { \partial x^{2} }} F (x) dx \\ =& - 0 + 0 + {{ 1 } \over { 2 }} \int_{-\infty}^{\infty} {{ \partial^{2} \left[ p (t,x) g^{2} \right] } \over { \partial x^{2} }} F (x) dx \end{align*}


Part 4.

p(t,x)tF(x)dx=ddtp(t,x)F(x)dx=p(t,x)[fFx+12g2Fxx]dx=[p(t,x)f]xF(x)dx+122[p(t,x)g2]x2F(x)dx \begin{align*} & \int_{-\infty}^{\infty} {{ \partial p(t,x) } \over { \partial t }} F(x) dx \\ =& {{ d } \over { dt }} \int_{-\infty}^{\infty} p(t,x) F(x) dx \\ =& \int_{-\infty}^{\infty} p(t,x)\left[ {\color{red} f F_{x}} + {\color{blue} {{ 1 } \over { 2 }} g^{2} F_{xx} } \right] dx \\ =& - \int_{-\infty}^{\infty} {{ \partial \left[ p (t,x) f \right] } \over { \partial x }} F (x) dx + {{ 1 } \over { 2 }} \int_{-\infty}^{\infty} {{ \partial^{2} \left[ p (t,x) g^{2} \right] } \over { \partial x^{2} }} F (x) dx \end{align*} If we push the first row to the left side and the last row to the left side, we obtain the following. [p(t,x)t([p(t,x)f]x+122[p(t,x)g2]x2)]F(x)dx=0 \int_{-\infty}^{\infty} \left[ {{ \partial p(t,x) } \over { \partial t }} - \left( - {{ \partial \left[ p (t,x) f \right] } \over { \partial x }} + {{ 1 } \over { 2 }} {{ \partial^{2} \left[ p (t,x) g^{2} \right] } \over { \partial x^{2} }} \right) \right] F(x) dx = 0 Since the integrated above holds for all FC0(R)F \in C_{0}^{\infty} \left( \mathbb{R} \right), the inside of the brackets becomes 00, resulting in the desired partial differential equation. p(t,x)t=[p(t,x)f(t,x)]x+122[p(t,x)(g(t,x))2]x2 {{ \partial p(t,x) } \over { \partial t }} = - {{ \partial \left[ p(t,x) f(t,x) \right] } \over { \partial x }} + {{ 1 } \over { 2 }} {{ \partial^{2} \left[ p(t,x) \left( g(t,x) \right)^{2} \right] } \over { \partial x^{2} }}

See Also