logo

Complete Statistics of the Exponential Family of Probability Distributions 📂Mathematical Statistics

Complete Statistics of the Exponential Family of Probability Distributions

Theorem 1

Given a parameter θ=(θ1,,θk)\mathbf{\theta} = \left( \theta_{1} , \cdots , \theta_{k} \right) and the probability density function or probability mass function of a random sample X1,,XnX_{1} , \cdots , X_{n} follows an exponential family distribution as shown below. f(x;θ)=h(x)c(θ)exp(i=1kwi(θj)ti(x)) f(x; \mathbf{\theta}) = h(x) c (\mathbf{\theta}) \exp \left( \sum_{i=1}^{k} w_{i} \left( \theta_{j} \right) t_{i} (x) \right) Then the following statistic TT is a complete statistic. T(X)=(i=1nt1(Xi),,i=1ntk(Xi)) T \left( \mathbf{X} \right) = \left( \sum_{i=1}^{n} t_{1} \left( X_{i} \right) , \cdots , \sum_{i=1}^{n} t_{k} \left( X_{i} \right) \right)

Proof

It is trivial by the uniqueness of the Laplace transform.


  1. Casella. (2001). Statistical Inference(2nd Edition): p288. ↩︎