logo

Milstein Method Derivation 📂Stochastic Differential Equations

Milstein Method Derivation

Method 1

dX(t)=f(Xt)dt+g(Xt)dWt,t[t0,T] d X(t) = f \left( X_{t} \right) dt + g \left( X_{t} \right) d W_{t} \qquad , t \in [t_{0}, T] Given that the Ito process is a solution to the autonomous stochastic differential equation described above. For equally spaced intervals of hh, the calculation expressed for the equally spaced points {tiT:ti+1=ti+h}i=0N\left\{ t_{i} \le T : t_{i+1} = t_{i} + h \right\}_{i=0}^{N} is a numerical solution to the given differential equation. Yi+1=Yi+f(Yi)h+g(Yi)hZ+12g(Yi)dg(Yi)dyh(Z21) Y_{i+1} = Y_{i} + f \left( Y_{i} \right) h + g \left( Y_{i} \right) \sqrt{h} Z + {{ 1 } \over { 2 }} g \left( Y_{i} \right) {{ d g \left( Y_{i} \right) } \over { d y }} h \left( Z^{2} - 1 \right) Here, ZZ is a random variable following the standard normal distribution.

Convergence

This solution converges strongly to the γ=1\gamma = 1th order, and weakly to the β=1\beta = 1th order.

Explanation

Milstein 2nd-order Approximation Scheme is a method that improves accuracy by incorporating a 2nd-order correction term into the Euler-Maruyama scheme. The formula might look complex due to the many indices, but it can be neatly written as the following by omitting some parts. Xt+h=Xt+fth+gthZ+12gtgth(Z21) X_{t + h} = X_{t} + f_{t} h + g_{t} \sqrt{h} Z + {{ 1 } \over { 2 }} g_{t} g_{t}’ h \left( Z^{2} - 1 \right)

Derivation

ft:=f(Xt)gt:=g(Xt) \begin{align*} f_{t} &:= f \left( X_{t} \right) \\ g_{t} &:= g \left( X_{t} \right) \end{align*} For convenience, let’s designate it as above. Since ff and gg are independent of time tt, it follows that df/dt=dg/dt=0df / dt = dg / dt = 0, and if we set it as f(x)f ' (x), it represents the derivative of ff with respect to xx.

Ito’s Formula: Assume that the Ito process {Xt}t0\left\{ X_{t} \right\}_{t \ge 0} is given. dXt=udt+vdWt d X_{t} = u dt + v d W_{t} If we set a function V(t,Xt)=VC2([0,)×R)V \left( t, X_{t} \right) = V \in C^{2} \left( [0,\infty) \times \mathbb{R} \right) such that Yt:=V(t,Xt)Y_{t} := V \left( t, X_{t} \right), then {Yt}\left\{ Y_{t} \right\} is also an Ito process, and the following holds. dYt=Vtdt+VxdXt+12Vxx(dXt)2=(Vt+Vxu+12Vxxv2)dt+VxvdWt \begin{align*} d Y_{t} =& V_{t} dt + V_{x} d X_{t} + {{ 1 } \over { 2 }} V_{xx} \left( d X_{t} \right)^{2} \\ =& \left( V_{t} + V_{x} u + {{ 1 } \over { 2 }} V_{xx} v^{2} \right) dt + V_{x} v d W_{t} \end{align*}

dX(t)=f(Xt)dt+g(Xt)dWt d X(t) = f \left( X_{t} \right) dt + g \left( X_{t} \right) d W_{t} Let’s calculate dftd f_{t} using the Ito formula from the given Ito process. If we set it as V=fV = f, according to the Ito formula dft=df(Xt)=(ftt+ftxft+122ftx2gt2)dt+ftxgtdWt=(0+ftft+12ft’’gt2)dt+ftgtdWt \begin{align*} d f_{t} =& d f \left( X_{t} \right) \\ =& \left( {{ \partial f_{t} } \over { \partial t }} + {{ \partial f_{t} } \over { \partial x }} f_{t} + {{ 1 } \over { 2 }} {{ \partial^{2} f_{t} } \over { \partial x^{2} }} g_{t}^{2} \right) dt + {{ \partial f_{t} } \over { \partial x }} g_{t} d W_{t} \\ =& \left( 0 + f_{t}’ f_{t} + {{ 1 } \over { 2 }} f_{t}’’ g_{t}^{2} \right) dt + f_{t}’ g_{t} d W_{t} \end{align*} it follows. Similarly, if we define V=gV = g and calculate dgtd g_{t}, dgt=gf(Xt)=(gtt+gtxft+122gtx2gt2)dt+gtxgtdWt=(0+gtft+12gt’’gt2)dt+gtgtdWt \begin{align*} d g_{t} =& g f \left( X_{t} \right) \\ =& \left( {{ \partial g_{t} } \over { \partial t }} + {{ \partial g_{t} } \over { \partial x }} f_{t} + {{ 1 } \over { 2 }} {{ \partial^{2} g_{t} } \over { \partial x^{2} }} g_{t}^{2} \right) dt + {{ \partial g_{t} } \over { \partial x }} g_{t} d W_{t} \\ =& \left( 0 + g_{t}’ f_{t} + {{ 1 } \over { 2 }} g_{t}’’ g_{t}^{2} \right) dt + g_{t}’ g_{t} d W_{t} \end{align*} it follows. If we convert it to the integral form from tt to ss, fs=ft+ts(fufu+12fu’’gu2)du+tsfugudWugs=gt+ts(gufu+12gu’’gu2)du+tsgugudWu \begin{align*} f_{s} =& f_{t} + \int_{t}^{s} \left( f_{u}’ f_{u} + {{ 1 } \over { 2 }} f_{u}’’ g_{u}^{2} \right) du + \int_{t}^{s} f_{u}’ g_{u} d W_{u} \\ g_{s} =& g_{t} + \int_{t}^{s} \left( g_{u}’ f_{u} + {{ 1 } \over { 2 }} g_{u}’’ g_{u}^{2} \right) du + \int_{t}^{s} g_{u}’ g_{u} d W_{u} \end{align*} it follows. If we substitute this into the integral form of the Ito process Xt+h=Xt+tt+hfsds+tt+hgsdWs X_{t+h} = X_{t} + \int_{t}^{t+h} f_{s} ds + \int_{t}^{t+h} g_{s} d W_{s} we obtain the following. Xt+h=Xt+tt+h[ft+ts(fufu+12fu’’gu2)du+tsfugudWu]ds+tt+h[gt+ts(gufu+12gu’’gu2)du+tsgugudWu]dWs \begin{align*} X_{t+h} =& X_{t} + \int_{t}^{t + h} \left[ f_{t} + {\color{Red} \int_{t}^{s} \left( f_{u}’ f_{u} + {{ 1 } \over { 2 }} f_{u}’’ g_{u}^{2} \right) du + \int_{t}^{s} f_{u}’ g_{u} d W_{u} } \right] ds \\ & + \int_{t}^{t + h} \left[ g_{t} + {\color{Red} \int_{t}^{s} \left( g_{u}’ f_{u} + {{ 1 } \over { 2 }} g_{u}’’ g_{u}^{2} \right) du} + \int_{t}^{s} g_{u}’ g_{u} d W_{u} \right] d W_{s} \end{align*}

Ito’s Multiplication Table: The product of dtdt and dWtd W_{t} is as follows. (dt)2=0dtdWt=0dWtdt=0(dWt)2=dt \begin{align*} \left( dt \right)^{2} =& 0 \\ dt d W_{t} =& 0 \\ d W_{t} dt =& 0 \\ \left( d W_{t} \right)^{2} =& dt \end{align*}

The part marked in red according to the Ito’s multiplication table is all 00. As a result, only the term treating ftf_{t} and gtg_{t} as constants and the double integral of the integrand dWudWsdW_{u} dW_{s} remain and can be written as follows. Xt+h=Xt+fttt+hds+gttt+hdWs+tt+htsgugudWudWs X_{t+h} = X_{t} + f_{t} \int_{t}^{t + h} ds + g_{t} \int_{t}^{t + h} d W_{s} + \int_{t}^{t + h} \int_{t}^{s} g_{u} g_{u}’ d W_{u} d W_{s} The last term tt+htsgugudWudWs\int_{t}^{t + h} \int_{t}^{s} g_{u} g_{u}’ d W_{u} d W_{s} is approximately calculated as follows for a random variable ZN(0,1)Z \sim N (0,1) following the standard normal distribution, according to the corollary of Ito’s formula abWsdWs=12[Wb2Wa2]12(ba) \begin{equation} \int_{a}^{b} W_{s} d W_{s} = {{ 1 } \over { 2 }} \left[ W_{b}^{2} - W_{a}^{2} \right] - {{ 1 } \over { 2 }} (b-a) \end{equation} and the normality of the increments of the Wiener process, i.e., (Wt+hWt)hN(0,1) \begin{equation} \left( W_{t+h} - W_{t} \right) \sim \sqrt{h} N \left( 0, 1 \right) \end{equation} Thus, the following is derived. tt+htsgugudWudWsgtgttt+htsdWudWs=gtgttt+h(WsWt)dWs=gtgt[tt+hWsdWsWt(Wt+hWt)]=gtgt[tt+hWsdWsWtWt+h+Wt2]=gtgt[Wt+h22Wt22h2WtWt+h+Wt2](1)=12gtgt[Wt+h2+Wt2h2WtWt+h]=12gtgt[(Wt+hWt)2h]=12gtgt[hZ2h](2)=12gtgth(Z21) \begin{align*} & \int_{t}^{t + h} \int_{t}^{s} g_{u} g_{u}’ d W_{u} d W_{s} \\ \approx& g_{t} g_{t} ' \int_{t}^{t+h} \int_{t}^{s} d W_{u} d W_{s} \\ =& g_{t} g_{t} ' \int_{t}^{t+h} \left( W_{s} - W_{t} \right) d W_{s} \\ =& g_{t} g_{t} ' \left[ \int_{t}^{t+h} W_{s} d W_{s} - W_{t} \left( W_{t+h} - W_{t} \right) \right] \\ =& g_{t} g_{t} ' \left[ \int_{t}^{t+h} W_{s} d W_{s} - W_{t} W_{t+h} + W_{t}^{2} \right] \\ =& g_{t} g_{t} ' \left[ {{ W_{t + h}^{2} } \over { 2 }} - {{ W_{t}^{2} } \over { 2 }} - {{ h } \over { 2 }} - W_{t} W_{t+h} + W_{t}^{2} \right] & \cdots (1) \\ =& {{ 1 } \over { 2 }} g_{t} g_{t} ' \left[ W_{t + h}^{2} + W_{t}^{2} - h - 2 W_{t} W_{t+h} \right] \\ =& {{ 1 } \over { 2 }} g_{t} g_{t} ' \left[ \left( W_{t + h} - W_{t} \right)^{2} - h \right] \\ =& {{ 1 } \over { 2 }} g_{t} g_{t} ' \left[ h Z^{2} - h \right] & \cdots (2) \\ =& {{ 1 } \over { 2 }} g_{t} g_{t}’ h \left( Z^{2} - 1 \right) \end{align*}


  1. Panik. (2017). Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: p197, 218~219. ↩︎