logo

Deriving Standard Normal Distribution as a Limiting Distribution of Student's t-Distribution 📂Probability Distribution

Deriving Standard Normal Distribution as a Limiting Distribution of Student's t-Distribution

Theorem

If Tnt(n)T_n \sim t(n) then Tn DN(0,1) T_n \ \overset{D}{\to} N(0,1)


  • N(μ,σ2)N \left( \mu , \sigma^{2} \right) is a normal distribution with mean μ\mu and variance σ2\sigma^{2}.
  • t(r)t(r) is a t-distribution with degrees of freedom rr.
  • D\overset{D}{\to} respectively imply distribution convergence.

Originally, the Student t-distribution was created for statistical analysis when the sample size is small. As the sample size increases, it becomes similar to the standard normal distribution, which in statistical terms is said to converge. Thus, without any special process, simply having a large sample induces the standard normal distribution.

Derivation

Definition of the t-distribution: For degrees of freedom ν>0\nu > 0, the following probability density function defines a continuous probability distribution t(ν)t \left( \nu \right) as the t-distribution. f(x)=Γ(ν+12)νπΓ(ν2)(1+x2ν)ν+12,xR f(x) = {{ \Gamma \left( {{ \nu + 1 } \over { 2 }} \right) } \over { \sqrt{\nu \pi} \Gamma \left( {{ \nu } \over { 2 }} \right) }} \left( 1 + {{ x^{2} } \over { \nu }} \right)^{- {{ \nu + 1 } \over { 2 }}} \qquad ,x \in \mathbb{R}

Definition of the standard normal distribution: The following probability density function defines a normal distribution N(0,12)N \left( 0,1^{2} \right) as the standard normal distribution. f(z)=12πexp[z22] f(z) = {{ 1 } \over { \sqrt{2 \pi} }} \exp \left[ - {{ z^{2} } \over { 2 }} \right]

Fn(t)=tΓ((n+1)/2)πnΓ(n/2)1(1+y2/n)(n+1)/2dy F_n(t) = \int_{-\infty}^{t} {{\Gamma ( (n+1)/2 ) } \over { \sqrt{\pi n} \Gamma (n/2) }} { {1} \over {(1 + y^{2} / n)^{(n+1)/2} } } dy The cumulative distribution function of TnT_n is given as above. Due to the continuity of FnF_{n}, limnFn(t)=limntfn(y)dy=tlimnfn(y)dy \lim_{n \to \infty} F_n (t) = \lim_{n \to \infty} \int_{-\infty}^{t} f_n (y) dy = \int_{-\infty}^{t} \lim_{n \to \infty} f_n (y) dy since Γ(1/2)=π\Gamma (1/2) = \sqrt{\pi} , fn(y)2f1(y)=1π21+y2\displaystyle |f_n (y)| \le 2 f_1 (y) = { {1} \over {\pi} } { {2} \over {1 + y^2 } } is true and according to the differentiation of the arctangent function, limntfn(y)dy<t2f1(y)dy=2πtan1t< \displaystyle\lim_{n \to \infty} \int_{-\infty}^{t} f_n (y) dy< \int_{-\infty}^{t} 2 f_1 (y) dy = { {2} \over {\pi} } \tan ^{-1} t < \infty Now, it is necessary to show where limnfn(y)\displaystyle \lim_{n \to \infty} f_n (y) specifically converges. First, let’s split fnf_n as follows. fn(y)=Γ((n+1)/2)πnΓ(n/2)1(1+y2/n)(n+1)/2=Γ((n+1)/2)n/2Γ(n/2)12π(1+y2/n)(n+1)/2=Γ((n+1)/2)n/2Γ(n/2)1(1+y2/n)1/212π(1+y2n)n/2 \begin{align*} f_{n} (y) =& {{\Gamma ( (n+1)/2 ) } \over { \sqrt{\pi n} \Gamma (n/2) }} { {1} \over {(1 + y^{2} / n)^{(n+1)/2} } } \\ =& {{\Gamma ( (n+1)/2 ) } \over { \sqrt{ n/2} \Gamma (n/2) }} \cdot { {1} \over { \sqrt{2 \pi} (1 + y^{2} / n)^{(n+1)/2} } } \\ =& {{\Gamma ( (n+1)/2 ) } \over { \sqrt{ n/2} \Gamma (n/2) }} \cdot { {1} \over {(1 + y^{2} / n)^{1/2} } } \cdot { {1} \over {\sqrt{2 \pi }} } \left( 1 + { {y^{2}} \over {n} } \right) ^{-n/2} \end{align*}

Stirling’s Approximation: limnn!enlnnn2πn=1 \lim_{n \to \infty} {{n!} \over {e^{n \ln n - n} \sqrt{ 2 \pi n} }} = 1

Let’s calculate the limit of the first term.

1 By Stirling’s approximation, for sufficiently large nNn \in \mathbb{N}, Γ(n)enlnnn2πn=(ne)n2πn \Gamma (n) \approx e^{n \ln n - n } \sqrt{ 2 \pi n} = \left( {{ n } \over { e }} \right)^{n} \sqrt { 2 \pi n } assuming for sufficiently large nn, Γ((n+1)/2)n/2Γ(n/2)2n(n+12e)n+122π(n+1)(n2e)n22πn2nn+12e(n+1n)n/2n+1n1e(1+1n)n/2 \begin{align*} {{ {\Gamma ( (n+1)/2 ) } } \over { { \sqrt{ n / 2 } \Gamma (n/2) } }} \approx& \sqrt{ {{ 2 } \over { n }} } {{ \left( {{ n+1 } \over { 2e }} \right)^{{{ n+1 } \over { 2 }}} \sqrt{ 2 \pi (n+1)} } \over { \cdot \left( {{ n } \over { 2e }} \right)^{{{ n } \over { 2 }}} \sqrt{ 2 \pi n} }} \\ \approx& \sqrt{ {{ 2 } \over { n }} } \sqrt{ {{ n+1 } \over { 2e }} } \left( {{ n+1 } \over { n }} \right)^{n/2} \sqrt{ {{ n+1 } \over { n }} } \\ \approx& \sqrt{ {{ 1 } \over { e }}} \left( 1 + {{ 1 } \over { n }} \right)^{n/2} \end{align*} therefore, limnΓ((n+1)/2)n/2Γ(n/2)=1 \lim_{n \to \infty} {{ {\Gamma ( (n+1)/2 ) } } \over { { \sqrt{ n / 2 } \Gamma (n/2) } }} = 1 and the second term is limn1(1+y2/n)1/2=1 \lim_{n \to \infty} { {1} \over {(1 + y^{2} / n)^{1/2} } } =1 and the third term is limn12π(1+y2n)n/2=12πey2/2 \lim_{n \to \infty} { {1} \over {\sqrt{2 \pi }} } \left( 1 + { {y^{2}} \over {n} } \right) ^{-n/2} = { {1} \over {\sqrt{2 \pi }} } e ^{- y^{2} / 2} thus, Fn(t)=t12πey2/2dy F_n(t) = \int_{-\infty}^{t} { {1} \over {\sqrt{2 \pi }} } e ^{- y^{2} / 2} dy Hence, TnT_n converges in distribution to a random variable that follows the standard normal distribution.