logo

Series Solution of Laguerre Differential Equation 📂Odinary Differential Equations

Series Solution of Laguerre Differential Equation

Definition

The following differential equation is referred to as the Laguerre differential equation.

xy+(1x)y+ny=0,n=0,1,2, xy^{\prime \prime}+(1-x)y^{\prime}+ny=0,\quad n=0,1,2,\cdots

Description

The solution to the Laguerre differential equation is called Laguerre polynomials, and the first few Laguerre polynomials are as follows.

L0(x)=1L1(x)=x+1L2(x)=12(x24x+2)L3(x)=16(x3+9x218x+6) \begin{align*} L_{0}(x) &= 1 \\ L_{1}(x) &= -x+1 \\ L_{2}(x) &= \frac{1}{2}\left( x^{2}-4x+2 \right) \\ L_{3}(x) &= \frac{1}{6}\left( -x^{3}+9x^{2}-18x+6 \right) \\ \vdots & \end{align*}

Examining the equation to solve it, when x=0x=0, the coefficient P(x)=xP(x)=x in yy^{\prime \prime} is 00, so x=0x=0 is a singular point, and since the following equation is satisfied, x=0x=0 is a regular singular point.

limx0x1xx=1<,limx0x2nx=0< \lim \limits_{x\rightarrow 0} x \frac{1-x}{x}=1<\infty,\quad \lim\limits_{x\rightarrow 0}x^{2}\frac{n}{x}=0 < \infty

Therefore, Frobenius method is used.

Solution

xy+(1x)y+λy=0 xy^{\prime \prime}+(1-x)y^{\prime}+\lambda y=0

Let’s assume the solution of the Laguerre differential equation as the following series.

y=n=0anxn+r y= \sum \limits _{n=0}^{\infty} a_{n}x^{n+r}

To substitute into the differential equation, calculating yy^{\prime} and yy^{\prime \prime} gives us the following respectively.

y=n=0(n+r)anxn+r1y=n=0(n+r)(n+r1)anxn+r2 \begin{align*} y^{\prime} &= \sum \limits _{n=0}^{\infty} (n+r)a_{n}x^{n+r-1} \\ y^{\prime \prime}&= \sum \limits _{n=0}^{\infty}(n+r)(n+r-1)a_{n}x^{n+r-2} \end{align*}

Substituting these into the differential equation gives n=0(n+r)(n+r1)anxn+r1+n=0(n+r)anxn+r1n=0(n+r)anxn+r+λn=0anxn+r=0 \sum \limits _{n=0}^{\infty}(n+r)(n+r-1)a_{n}x^{n+r-1}+ \sum \limits _{n=0}^{\infty} (n+r)a_{n}x^{n+r-1} - \sum \limits _{n=0}^{\infty} (n+r)a_{n}x^{n+r} +\lambda \sum \limits _{n=0}^{\infty} a_{n}x^{n+r}=0

To match the order of xx to n+rn+r, changing the first two series indices gives us the following.

n=1(n+r+1)(n+r)an+1xn+r+n=1(n+r+1)an+1xn+rn=0(n+r)anxn+r+λn=0anxn+r=0 \sum \limits _{n=-1}^{\infty}(n+r+1)(n+r)a_{n+1}x^{n+r}+ \sum \limits _{n=-1}^{\infty} (n+r+1)a_{n+1}x^{n+r} - \sum \limits _{n=0}^{\infty} (n+r)a_{n}x^{n+r} +\lambda \sum \limits _{n=0}^{\infty} a_{n}x^{n+r}=0

Now, taking out the terms where n=1n=-1 and combining the series gives us

r(r1)a0+ra0+n=0[(n+r+1)(n+r)an+1+(n+r+1)an+1(n+r)an+λan]xn+r=0 r(r-1)a_{0}+ra_{0}+\sum \limits _{n=0}^{\infty} \left[ (n+r+1)(n+r)a_{n+1}+(n+r+1)a_{n+1}-(n+r)a_{n}+\lambda a_{n} \right]x^{n+r}=0

For the above equation to hold, all terms must have a coefficient of 00, so we get the following condition.

r(r1)a0+ra0=0    r2a0=0    r=0 \begin{align*} && r(r-1)a_{0}+ra_{0} &= 0 \\ \implies && r^{2}a_{0} &= 0 \\ \implies && r &= 0 \end{align*}

The coefficients inside the series must also be 00, so substituting r=0r=0 gives us the following recursion formula.

(n+1)nan+1+(n+1)an+1nan+λan=0    (n+1)2an+1=(nλ)an    an+1=nλ(n+1)2an \begin{align*} && (n+1)na_{n+1}+(n+1)a_{n+1}-na_{n}+\lambda a_{n} &= 0 \\ \implies && (n+1)^{2}a_{n+1} &= (n-\lambda)a_{n} \\ \implies && a_{n+1} &= \frac{n-\lambda}{(n+1)^{2}}a_{n} \end{align*}

Therefore, the coefficients from n=1n=1 onwards can all be represented as a0a_{0}. Calculating in order gives us the following.

a1=λa0a2=1λ22a1=λ(λ1)22a0a3=2λ32a2=λ(λ1)(λ2)3222a0an=(1)nλ(λ1)(λn+2)(λn+1)n2(n1)222a0 \begin{align*} a_{1} &= -\lambda a_{0} \\ a_{2} &= \frac{1-\lambda}{2^{2}}a_{1}=\frac{\lambda (\lambda - 1)}{2^{2}}a_{0} \\ a_{3} &= \frac{2-\lambda}{3^{2}}a_{2}=-\frac{\lambda (\lambda-1)(\lambda-2)}{3^{2}\cdot2^{2}}a_{0} \\ \vdots & \\ a_{n} &= (-1)^{n}\frac{\lambda (\lambda -1)\cdots (\lambda-n+2)(\lambda-n+1)}{n^{2}(n-1)^{2}\cdots 2^{2}}a_{0} \end{align*}

Therefore, the solution to the differential equation is expressed as the following series.

y=a0[1λx+λ(λ1)4x2λ(λ1)(λ2)36x3+] y= a_{0}\left[ 1-\lambda x +\frac{\lambda (\lambda-1)}{4}x^{2} -\frac{\lambda (\lambda-1)(\lambda-2)}{36}x^{3}+\cdots\right]

If the constant λ\lambda is a non-negative integer, then the series solution becomes a polynomial with a finite number of terms. Since our goal is to find solutions that do not diverge, let’s denote the solution to the Laguerre differential equation for non-negative λ\lambda as Lλ(x)L_{\lambda}(x). Then, the solution for each λ\lambda is as follows.

L1(x)=a0L1(x)=a0(1x)L2(x)=a0(12x+12x2)L3(x)=a0(13x+32x216x3) \begin{align*} L_{1}(x) &= a_{0} \\ L_{1}(x) &= a_{0}(1-x) \\ L_{2}(x) &= a_{0}\left( 1-2x + \frac{1}{2}x^{2} \right) \\ L_{3}(x) &= a_{0} \left( 1-3x+\frac{3}{2}x^{2}-\frac{1}{6}x^{3}\right) \\ \vdots & \end{align*}

Setting a0a_{0} as 11 and organizing it so that the coefficient of the highest term is ±1\pm 1 gives us

L1(x)=1L1(x)=x+1L2(x)=12(x24x+2)L3(x)=16(x3+9x218x+6) \begin{align*} L_{1}(x) &= 1 \\ L_{1}(x) &= -x+1 \\ L_{2}(x) &= \frac{1}{2}\left( x^{2}-4x+2 \right) \\ L_{3}(x) &= \frac{1}{6}\left( -x^{3}+9x^{2}-18x+6 \right) \\ \vdots & \end{align*}