logo

Properties of the Interior in Topological Spaces and Subspaces 📂Topology

Properties of the Interior in Topological Spaces and Subspaces

Theorem

Given a topological space (X,T)(X,\mathcal{T}) and a subset A,B,AαX (αΛ)A,B,A_{\alpha}\subset X\ (\alpha \in \Lambda), then:

  • (a1)(a1): If ABA\subset B, then ABA^{\circ} \subset B^{\circ}.
  • (b1)(b1): AB(AB)A^{\circ}\cup B^{\circ} \subset (A\cup B)^{\circ}
  • (c1)(c1): AB=(AB)A^{\circ} \cap B^{\circ} = (A\cap B)^{\circ}
  • (d1)(d1): (αΛAα)αΛAα(\cap_{\alpha\in\Lambda}A_{\alpha})^{\circ} \subset \cap _{\alpha \in \Lambda} A_{\alpha}^{\circ}

Interior of Subspace

Even if it’s the same set, depending on how the whole space is given, it may or may not become an open set. Therefore, to clarify its meaning, the following notation is used.

Assuming a topological space XX, a subspace AA, and a subset BB are given as BAXB\subset A\subset X. then intX(B)\mathrm{int}_{X}(B) denotes the interior of BB in the topological space XX. intA(B)\mathrm{int}_{A}(B) denotes the interior of BB in the subspace AA. Also, the following two properties hold:

  • (a2)(a2): intX(B)intA(B)\mathrm{int}_{X}(B) \subset \mathrm{int}_{A}(B)
  • (b2)(b2): intX(B)=intX(A)intA(B)\mathrm{int}_{X}(B)=\mathrm{int}_{X}(A) \cap \mathrm{int}_{A}(B)

  • AA^{\circ} denotes the interior of the set AA.

Proof

(a1)(a1)

Let’s say xAx \in A^{\circ}. Then by the definition of interior, there exists an open set that satisfies xUAx \in U \subset A. Assuming xUABx\in U \subset A \subset B, then xBx\in B^{\circ} is true.

(b1)(b1)

Assuming AABA \subset A\cup B and BABB\subset A\cup B, then by (a)(a), A(AB)A^{\circ} \subset (A\cup B)^{\circ} and B(AB)B^{\circ} \subset (A \cup B)^{\circ} hold. Therefore, AB(AB)A^{\circ}\cup B^{\circ} \subset (A\cup B)^{\circ}

(c1)(c1)

()(\subset)

Let’s say xABx\in A^{\circ} \cap B^{\circ}. Then, xAx \in A^{\circ} and xBx\in B^{\circ} are true. Therefore, there exists an open set U,VU,V that satisfies xUAx\in U \subset A and xVBx\in V \subset B. Since the intersection of open sets is also an open set and x(UV)(AB)x\in (U\cap V) \subset (A\cap B), then x(AB)x\in (A\cap B)^{\circ}.


()(\supset)

Assuming ABAA\cap B \subset A and ABBA \cap B \subset B, then by (a)(a), (AB)A(A \cap B)^{\circ} \subset A^{\circ} , and (AB)B(A \cap B ) ^{\circ} \subset B^{\circ} hold. Therefore, (AB)AB(A\cap B)^{\circ} \subset A^{\circ}\cap B^{\circ} is true.

(d1)(d1)

Let’s say E=αΛAαE=\cap_{\alpha\in\Lambda} A_{_\alpha}. Then for all α\alpha, EAαE \subset A_{\alpha} is true. Thus, by (a)(a), for all α\alpha, EAαE^{\circ} \subset A_{\alpha}^{\circ} is true. Therefore, (αΛAα)=EαΛAα(\cap _{\alpha \in \Lambda }A_{\alpha})^{\circ}=E^{\circ} \subset \cap_{\alpha \in \Lambda}A_{\alpha} ^{\circ}

(a2)(a2)

Let’s say xintX(B)x\in \mathrm{int}_{X}(B). Then by the definition of an interior point, there exists an open set UU in XX that satisfies xUBx \in U \subset B. Then, UBAU \subset B \subset A and an open set UU in XX that satisfies U=AUU=A\cap U exists, so by the equivalence conditions for an open set in a subspace1, UU is an open set in the subspace AA. Therefore, an open set UU in AA exists that satisfies xUBx\in U \subset B, so xintA(B)x \in \mathrm{int}_{A}(B)

(b2)(b2)

()( \subset )

Since BAB\subset A, by (a1)(a1), intX(B)intX(A)\mathrm{int}_{X}(B) \subset \mathrm{int}_{X}(A) is true. Also, by (a2)(a2), intX(B)intA(B)\mathrm{int}_{X}(B) \subset \mathrm{int}_{A}(B) is true, so intX(B)intX(A)intA(B) \mathrm{int}_{X}(B) \subset \mathrm{int}_{X}(A) \cap \mathrm{int}_{A}(B)


()( \supset )

Let’s say xintX(A)intA(B)x \in \mathrm{int}_{X}(A) \cap \mathrm{int}_{A}(B). Then there exists an open set UU in XX that satisfies xUAx \in U \subset A and xVB x \in V \subset B, and an open set VV in AA. Since VV is an open set in AA, by the equivalence conditions for an open set in a subspace2, an open set UU^{\prime} in XX exists that satisfies V=AUV=A\cap U^{\prime}. Thus, for the open set UUU\cap U^{\prime} in XX, xUUAU=VB x\in U\cap U^{\prime} \subset A\cap U^{\prime} =V \subset B Therefore, by the definition of an interior point, xintX(B)x\in \mathrm{int}_{X}(B)


  1. 정리 1의 (a1) ↩︎

  2. Theorem 1 (a1) ↩︎