logo

Proof of the Submartingale Convergence Theorem 📂Probability Theory

Proof of the Submartingale Convergence Theorem

Theorem

Given a probability space (Ω,F,P)( \Omega , \mathcal{F} , P) and a submartingale {(Xn,Fn)}\left\{ ( X_{n} , \mathcal{F}_{n} ) \right\}, if we assume supnNEXn+<\displaystyle \sup_{n \in \mathbb{N}} E X_{n}^{+} < \infty, then XnX_{n} converges almost surely to some random variable X:ΩRX_{\infty}: \Omega \to \mathbb{R}. EX<EX+<E X_{\infty} < E X_{\infty}^{+} < \infty

Proof

Strategy: Use the properties of limit supremum and limit infimum. X:=lim supnNXnX:=lim infnNXn X^{\ast}:= \limsup_{n \in \mathbb{N}} X_{n} \\ X_{\ast}:= \liminf_{n \in \mathbb{N}} X_{n} Then, (X>X)=a<ba,bQ(X>b>a>X) \left( X^{\ast} > X_{\ast} \right) = \bigcup_{a < b \\ a, b \in \mathbb{Q}} \left( X^{\ast} > b > a > X_{\ast} \right) since a,bQa,b \in \mathbb{Q}, we can divide (X>X)(X^{\ast} > X_{\ast}) into PP countably. Therefore, for all rational numbers aa, bb between XX^{\ast} and XX_{\ast}, if P(X>b>a>X)=0P \left( X^{\ast} >b >a> X_{\ast} \right) = 0 then P(X>X)=0P \left( X^{\ast} > X_{\ast} \right) = 0, meaning that XnX_{n} converges almost surely to XX_{\infty}.


Part 1. P(X>b>a>X)P(β(a,b)=)P \left( X^{\ast} > b > a > X_{\ast} \right) \le P \left( \beta_{\infty} (a,b) = \infty \right)

Let’s denote the number of upcrossings within the closed interval formed by two rational numbers a,bQa, b \in \mathbb{Q} and [a,b][a,b] as βN(a,b)\beta_{N} (a,b) , and its limit as β(a,b):=limNβN(a,b)\displaystyle \beta_{\infty} (a,b):= \lim_{N \to \infty} \beta_{N} (a,b). If X>b>a>XX^{\ast} > b > a > X_{\ast}, it implies that XnX_{n} has descended below aa and ascended above bb for infinitely many nNn \in \mathbb{N}. Hence, β(a,b)=\beta_{\infty} (a,b) = \infty, and in proposition, X>b>a>X    β(a,b)= X^{\ast} > b > a > X_{\ast} \implies \beta_{\infty} (a,b) = \infty In set notation, (X>b>a>X)(β(a,b)=) \left( X^{\ast} > b > a > X_{\ast} \right) \subset \left( \beta_{\infty} (a,b) = \infty \right) Taking the probability of PP, P(X>b>a>X)P(β(a,b)=) P \left( X^{\ast} > b > a > X_{\ast} \right) \le P \left( \beta_{\infty} (a,b) = \infty \right)


Part 2. P(β(a,b)<)=1P \left( \beta_{\infty} (a,b) < \infty \right) = 1

Since P(X=)0    E(X)= P \left( |X| = \infty \right) \ne 0 \implies E \left( |X| \right) = \infty by the contrapositive, almost surely Eβ(a,b)<    β(a,b)< E \beta_{\infty} (a,b) < \infty \implies \beta_{\infty} (a,b) < \infty

Upcrossing expected value upper bound: EβN(a,b)EXN++aba\displaystyle E \beta_{N} (a,b) \le {{ E X_{N}^{+} + |a| } \over { b-a }}

Monotone convergence theorem: Let the sequence of non-negative measurable functions {fn}\left\{ f_{n} \right\} satisfy fnff_{n} \nearrow f. Then, limnEfndm=Efdm \lim_{n \to \infty} \int_{E} f_{n} dm = \int_{E} f dm

By assumption, EβN(a,b)EXN++abasupNNEXN++aba< E \beta_{N} (a,b) \le {{ E X_{N}^{+} + |a| } \over { b-a }} \le {{ \sup_{N \in \mathbb{N}} E X_{N}^{+} + |a| } \over { b-a }} < \infty since by definition of βN(a,b)\beta_{N} (a,b), we have βN(a,b)β(a,b)\beta_{N} (a,b) \nearrow \beta_{\infty} (a,b), by the monotone convergence theorem, >limNEβN(a,b)=ElimNβN(a,b)=Eβ(a,b) \begin{align*} \infty &>& \lim_{N \to \infty} E \beta_{N} (a,b) \\ =& E \lim_{N \to \infty} \beta_{N} (a,b) \\ =& E \beta_{\infty} (a,b) \end{align*} Summing up, since Eβ(a,b)<E \beta_{\infty} (a,b) < \infty, almost surely β(a,b)<\beta_{\infty} (a,b) < \infty, meaning P(β(a,b)<)=1P \left( \beta_{\infty} (a,b) < \infty \right) = 1 holds.


Part 3. P(X=X)=1\displaystyle P \left( X^{\ast} = X_{\ast} \right) = 1

According to Part 1~2, for all a,bQa, b \in \mathbb{Q} where X>b>a>XX^{\ast} > b > a > X_{\ast}, P(X>b>a>X)P(β(a,b)=)=0 P \left( X^{\ast} > b > a > X_{\ast} \right) \le P \left( \beta_{\infty} (a,b) = \infty \right) = 0 Since probability PP is a measure, P(X>X)=P[a<ba,bQ(X>b>a>X)]=a<ba,bQP(X>b>a>X)a<ba,bQ0=0 \begin{align*} P \left( X^{\ast} > X_{\ast} \right) =& P \left[ \bigcup_{a < b \\ a, b \in \mathbb{Q}} \left( X^{\ast} > b > a > X_{\ast} \right) \right] \\ =& \sum_{a < b \\ a, b \in \mathbb{Q}} P \left( X^{\ast} > b > a > X_{\ast} \right) \\ \le & \sum_{a < b \\ a, b \in \mathbb{Q}} 0 \\ =& 0 \end{align*} Summing up, since P(XX)=1P \left( X^{\ast} \le X_{\ast} \right) = 1, the limit XX_{\infty} of XnX_{n} almost surely exists.


Part 4. EX<E X_{\infty} < \infty

By the decomposition of absolute values, Xn=Xn++Xn=2Xn+Xn |X_{n}| = X_{n}^{+} + X_{n}^{-} = 2 X_{n}^{+} - X_{n} Since {(Xn,Fn)}\left\{ ( X_{n} , \mathcal{F}_{n} ) \right\} is a submartingale, hence EXnEX1E X_{n} \ge E X_{1}, EXn=2EXn+EXn2EXn+EX1 E |X_{n}| = 2 E X_{n}^{+} - E X_{n} \le 2 E X_{n}^{+} - E X_{1} Given that we assumed supnNEXn+<\displaystyle \sup_{n \in \mathbb{N}} E X_{n}^{+} < \infty, supnNEXn2supnNEXn+EX1< \sup_{n \in \mathbb{N}} E | X_{n} | \le 2 \sup_{n \in \mathbb{N}} E X_{n}^{+} - E X_{1} < \infty

Fatou’s lemma: For a sequence of non-negative measurable functions {fn}\left\{ f_{n} \right\}, E(lim infnfn)dmlim infnEfndm\displaystyle \int_{E} \left( \liminf_{n \to \infty} f_{n} \right) dm \le \liminf_{n \to \infty} \int_{E} f_{n} dm

supnNEXn<\sup_{n \in \mathbb{N}} E | X_{n} | < \infty and by Fatou’s lemma, >supnNEXnlim infnEXn=lim infnΩXndP=Ωlim infnXndP=ΩXdP=EX \begin{align*} \infty &>& \sup_{n \in \mathbb{N}} E | X_{n} | \\ \ge& \liminf_{n \to \infty} E | X_{n} | \\ =& \liminf_{n \to \infty} \int_{\Omega} | X_{n} | d P \\ =& \int_{\Omega} \liminf_{n \to \infty} | X_{n} | d P \\ =& \int_{\Omega} | X_{\infty} | d P \\ =& E |X_{\infty}| \end{align*} Therefore, EXE | X_{\infty} | also exists.

Corollary

Particularly, in the proof process of Part 4., if Xn<0X_{n} < 0, then from Xn=Xn+XnX_{n} = X_{n}^{+} - X_{n}^{-} to Xn+=0X_{n}^{+} = 0, implying that even the condition supnNEXn+<\displaystyle \sup_{n \in \mathbb{N}} E X_{n}^{+} < \infty becomes unnecessary.