logo

Properties of Stopping Times 📂Probability Theory

Properties of Stopping Times

Theorem

Let’s assume we have a probability space (Ω,F,P)( \Omega , \mathcal{F} , P) and a martingale {(Xn,Fn)}\left\{ ( X_{n} , \mathcal{F}_{n} ) \right\}. For a given stopping time τ\tau, Fτ:={AF:A(τ=n)Fn}\mathcal{F}_{\tau}:= \left\{ A \in \mathcal{F}: A \cap ( \tau = n ) \in \mathcal{F}_{n} \right\} is referred to as the sigma field induced by τ\tau.

  • [1]: Fτ\mathcal{F}_{\tau} is a sigma field.
  • [2]: τ\tau is a Fτ\mathcal{F}_{\tau}-measurable function.
  • [3]: For a martingale {(Xn,Fn)}\left\{ ( X_{n} , \mathcal{F}_{n} ) \right\}, XτX_{\tau} is a Fτ\mathcal{F}_{\tau}-measurable function.
  • [4]: 1(σ=n)\mathbb{1}_{(\sigma = n)} is a Fσ\mathcal{F}_{\sigma}-measurable function.
  • [5]: If ZnZ_{n} is a FnF_{n}-measurable function, then Zn1σ=nZ_{n} \mathbb{1}_{\sigma = n} is both a Fσ\mathcal{F}_{\sigma}-measurable function and a Fn\mathcal{F}_{n}-measurable function. Moreover, Zn1(σ=n)=Zσ1(σ=n)Z_{n} \mathbb{1}_{(\sigma = n)} = Z_{\sigma} \mathbb{1}_{(\sigma = n)} holds.
  • [6]: E(XτFσ)1(σ=n)=E(XτFn)1(σ=n) a.s.E(X_{\tau} | \mathcal{F}_{\sigma} ) \mathbb{1}_{(\sigma = n)} = E(X_{\tau} | \mathcal{F}_{n} ) \mathbb{1}_{(\sigma = n)} \text{ a.s.}

  • Concerning Borel sets BB(R)B \in \mathcal{B}(\mathbb{R}), with (τB)=τ1(B)(\tau \in B) = \tau^{-1} (B), (τ=n)(\tau = n) is equivalent to τ1({n})\tau^{-1} ( \left\{ n \right\} ).
  • That τ\tau is a Fn\mathcal{F}_{n}-measurable function means for all Borel sets BB(R)B \in \mathcal{B}(\mathbb{R}), it implies τ1(B)Fn\tau^{-1} (B) \in \mathcal{F}_{n}.
  • Given a stochastic process {Xn}nN0\left\{ X_{n} \right\}_{n \in \mathbb{N}_{0}}, regarding ωΩ\omega \in \Omega, XτX_{\tau} signifies the following: Xτ=Xτ(ω)=Xτ(ω)(ω) X_{\tau} = X_{\tau} ( \omega )= X_{\tau (\omega)} ( \omega )

Explanation

A stopping time can essentially be understood as a random variable that represents a timing we are interested in.

Proof

[1]

To check if Fτ\mathcal{F}_{\tau} satisfies the conditions of a sigma field, we proceed as follows:

Part (i). Fτ\emptyset \in \mathcal{F}_{\tau}

Since F\mathcal{F} and Fn\mathcal{F}_{n} are sigma fields, they include \emptyset. Therefore, Fτ\emptyset \in \mathcal{F}_{\tau} holds.


Part (ii). AFτ    AcFτA \in \mathcal{F}_{\tau} \implies A^{c} \in \mathcal{F}_{\tau}

Ac(τ=n)=(τ=n)[A(τ=n)] A^{c} \cap ( \tau = n ) = ( \tau = n ) \setminus \left[ A \cap ( \tau = n ) \right] where (τ=n)Fn( \tau = n) \in \mathcal{F}_{n}, and if AFτA \in \mathcal{F}_{\tau}, then by the definition of FτF_{\tau}, A(τ=n)FnA \cap ( \tau = n) \in \mathcal{F}_{n} follows, thus AcFτA^{c} \in \mathcal{F}_{\tau}


Part (iii). {An}n=1Fτ    i=1AiFτ\displaystyle \left\{ A_{n} \right\}_{n=1}^{\infty} \subset \mathcal{F}_{\tau} \implies \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}_{\tau}

For i=1,2,i = 1 , 2, \cdots, if AiFτA_{i} \in \mathcal{F}_{\tau} then by the definition of FτF_{\tau}, Ai(τ=n)FnA_{i} \cap ( \tau = n) \in \mathcal{F}_{n} follows. Thus, i=1Ai(τ=n)=i=1[Ai(τ=n)]Fn \bigcup_{i=1}^{\infty} A_{i} \cap (\tau = n ) = \bigcup_{i=1}^{\infty} \left[ A_{i} \cap ( \tau = n) \right] \in \mathcal{F}_{n} Once again, by the definition of FτF_{\tau}, i=1AiFτ\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}_{\tau}

[2]

According to the equivalent conditions of a measurable function, to verify if τ\tau is a Fτ\mathcal{F}_{\tau}-measurable function, it’s enough to check that for all kRk \in \mathbb{R}, (τk)Fτ( \tau \le k ) \in \mathcal{F}_{\tau} holds. (τk)(τ=n)={,k<n(τ=n),kn ( \tau \le k ) \cap ( \tau = n) = \begin{cases} \emptyset &, k < n \\ (\tau = n) &, k \ge n \end{cases} Here, Fn\emptyset \in \mathcal{F}_{n} and (τ=n)Fn(\tau =n ) \in \mathcal{F}_{n}, so regardless of what kRk \in \mathbb{R} is, (τk)(τ=n)Fn( \tau \le k ) \cap ( \tau = n) \in \mathcal{F}_{n} holds. Therefore, for all kRk \in \mathbb{R}, (τk)Fτ( \tau \le k ) \in \mathcal{F}_{\tau} holds, and τ\tau is a Fτ\mathcal{F}_{\tau}-measurable function.

[3]

For any Borel set BB(R)B \in \mathcal{B}(\mathbb{R}), the following holds: (XτB)(τ=n)=(XnB)(τ=n) (X_{\tau} \in B) \cap (\tau = n) = (X_{n} \in B) \cap (\tau = n) This is because the reason (XτB)(X_{\tau} \in B) and (XnB)(X_{n} \in B) are considered only when taking the intersection with (τ=n)(\tau = n) results in only τ=n\tau = n. It’s similar to how we only consider fixed cases when computing conditional expectations E(YX)E(Y|X) as in X=xX=x. Meanwhile, according to the definition of a martingale, (XnB)Fn(X_{n} \in B) \in \mathcal{F}_{n} must hold, and by the definition of stopping time, (τ=n)Fn(\tau = n ) \in \mathcal{F}_{n} holds. Therefore, [(XτB)(τ=n)]Fτ\left[ (X_{\tau} \in B) \cap (\tau = n) \right] \in \mathcal{F}_{\tau}, and XτX_{\tau} is a Fτ\mathcal{F}_{\tau}-measurable function.

[4]

For event AFA \in \mathcal{F}, 1A\mathbb{1}_{A} is represented as one of three possibilities: (1Aa)={Ω,a1Ac,a[0,1),a<0 ( \mathbb{1}_{A} \le a ) = \begin{cases} \Omega &, a \ge 1 \\ A^{c} &, a \in [0,1) \\ \emptyset &, a < 0 \end{cases} Thus, given event A=(σ=n)A = (\sigma = n), for all Borel sets BB(R)B \in \mathcal{B}(\mathbb{R}), ,(σn),ΩFσ\emptyset, (\sigma \ne n), \Omega \in \mathcal{F}_{\sigma} holds, so (1(σ=n)a)Fσ( \mathbb{1}_{(\sigma = n)} \le a ) \in \mathcal{F}_{\sigma}. In other words, 1(σ=n)\mathbb{1}_{(\sigma = n)} is a Fσ\mathcal{F}_{\sigma}-measurable function.

[5]

Zn1(σ=n)={Zσ1,σ=n0,σ0 Z_{n} \mathbb{1}_{(\sigma = n)} = \begin{cases} Z_{\sigma} \cdot 1 &, \sigma = n \\ 0 &, \sigma \ne 0 \end{cases} thus Zn1(σ=n)=Zσ1(σ=n)Z_{n} \mathbb{1}_{(\sigma = n)} = Z_{\sigma} \mathbb{1}_{(\sigma = n)} holds. [3] implicates that ZσZ_{\sigma} is a Fσ\mathcal{F}_{\sigma}-measurable function, and [4] implies that 1(σ=n)\mathbb{1}_{(\sigma = n)} is also a Fσ\mathcal{F}_{\sigma}-measurable function, so their product, Zn1(σ=n)Z_{n} \mathbb{1}_{(\sigma = n)}, is also a Fσ\mathcal{F}_{\sigma}-measurable function.

[6]

Since E(XτFn)E \left( X_{\tau} | \mathcal{F}_{n} \right) is Fn\mathcal{F}_{n}-measurable, E(XτFn)1σ=nE \left( X_{\tau} | \mathcal{F}_{n} \right) \mathbb{1}_{ \sigma = n} is Fσ\mathcal{F}_{\sigma}-measurable by [4]. Meanwhile, 1(σ=n)\mathbb{1}_{(\sigma=n)}, due to the smoothing property, is a Fσ\mathcal{F}_{\sigma}-measurable function, thus moving in and out of E(Fσ)E ( \cdot | \mathcal{F}_{\sigma} ) is permissible.

Smoothing property: If XX is G\mathcal{G}-measurable, then E(XYG)=XE(YG) a.s.E(XY | \mathcal{G}) = X E (Y | \mathcal{G}) \text{ a.s.}

Property of conditional expectation: If XX is F\mathcal{F}-measurable, then E(XF)=X a.s.E(X|\mathcal{F}) =X \text{ a.s.}

Furthermore, according to the properties above, for all AFσA \in \mathcal{F}_{\sigma}, AE(XτFσ)1(σ=n)dP=AE(Xτ1(σ=n)Fσ)dP=AXτ1(σ=n)dP=A(σ=n)XτdP=AXτ1(σ=n)dP=A(σ=n)E(XτFn)dP=AE(XτFn)1(σ=n)dP \begin{align*} \int_{A} E \left( X_{\tau} | \mathcal{F}_{\sigma} \right) \mathbb{1}_{(\sigma = n)} dP =& \int_{A} E \left( X_{\tau} \mathbb{1}_{(\sigma = n)} | \mathcal{F}_{\sigma} \right) dP \\ =& \int_{A} X_{\tau} \mathbb{1}_{(\sigma = n)} dP \\ =& \int_{A \cap (\sigma = n)} X_{\tau} dP \\ =& \int_{A} X_{\tau} \mathbb{1}_{(\sigma = n)} dP \\ =& \int_{A \cap (\sigma = n)} E \left( X_{\tau} | \mathcal{F}_{n} \right) dP \\ =& \int_{A } E \left( X_{\tau} | \mathcal{F}_{n} \right) \mathbb{1}_{(\sigma = n)} dP \end{align*} AF,Afdm=0    f=0 a.e.\displaystyle \forall A \in \mathcal{F}, \int_{A} f dm = 0 \iff f = 0 \text{ a.e.} hence, E(XτFσ)1(σ=n)=E(XτFn)1(σ=n) a.s. E(X_{\tau} | \mathcal{F}_{\sigma} ) \mathbb{1}_{(\sigma = n)} = E(X_{\tau} | \mathcal{F}_{n} ) \mathbb{1}_{(\sigma = n)} \text{ a.s.}