logo

Hahn-Banach Extension Theorem 📂Banach Space

Hahn-Banach Extension Theorem

Theorem1

Let’s call (X,)(X, \left\| \cdot \right\|) a normed space. Let YXY \subset X. Also, given a linear functional yYy^{\ast} \in Y^{\ast} of YY. Then there exists a linear functional xXx^{\ast} \in X^{\ast} of XX that satisfies the following equation.

x(y)=y(y),yY \begin{equation} x^{\ast}(y)=y^{\ast}(y),\quad \forall y \in Y \end{equation}

xX=yY \begin{equation} \| x^{\ast}\|_{X^{\ast}} = \| y^{\ast}\|_{Y^{\ast}} \end{equation}

Explanation

In simple terms, this means that the dual of a subspace can be extended to the dual of the entire space. In other words, all linear functionals of the subspace have a counterpart in the entire space’s linear functionals with the same function values and norms. Also, let’s treat the norm space XX as a C\mathbb{ C}-vector space.

Auxiliary Theorem: Hahn-Banach Theorem for Semi Norms

Let XX be a C\mathbb{C}-vector space and YXY \subset X. Let’s call p:XRp : X \to \mathbb{ R} a seminorm of XX. And suppose that y:YC y^{\ast} : Y \to \mathbb{ C} is a linear functional of YY that satisfies the following condition.

y(y)p(y),yY | y^{\ast}(y) | \le p(y),\quad \forall y\in Y

Then there exists a linear functional x:XCx^{\ast} : X \to \mathbb{C} of XX that satisfies the following conditions.

x(y)=y(y),yY x^{\ast}(y)=y^{\ast}(y),\quad \forall y \in Y

x(x)p(x),xX | x^{\ast}(x) | \le p(x),\quad \forall x \in X

Proof

Let’s denote the norms of XX and YY as \left\| \cdot \right\|, the norms of XX^{\ast} and YY^{\ast} as X\left\| \cdot \right\|_{X^{\ast}} and Y\left\| \cdot \right\|_{Y^{\ast}} respectively. Let’s assume p:XRp : X \to \mathbb{R} is defined as follows.

p(x)=yYxX,xX p(x)=\|y^{\ast}\|_{Y^{\ast}} \|x \|_{X},\quad x\in X

Then pp can be shown to be quasi-linear. By definition, since 0p0 \le p, pp is a seminorm. Also, the following equation holds:

y(y)y(y)= y1yy(y)= yy(yy)yyY= p(y) \begin{align*} y^{\ast}(y) \le & | y^{\ast}(y) | \\ =&\ \left| \|y\| \frac{1}{\| y\|} y^{\ast}(y) \right| \\ =&\ \|y\| \left| y^{\ast}\left( \frac{y}{\|y\|} \right) \right| \\ \le & \|y\| \left\|y^{\ast}\right\|_{Y^{\ast}} \\ =&\ p(y) \end{align*}

In the third line, since y\|y\| is a constant, it can come out of the absolute value, and since yy^{\ast} is linear, 1y\frac{1}{\|y\|} entered into the function. Moreover, the fourth line is yy=1\left\| \frac{y}{\|y\|} \right\| =1 and by the definition of dual norm, since yY=supy1yYy(y)\| y^{\ast}\|_{Y^{\ast}}=\sup \limits_{\substack{ \|y\| \le 1 \\ y\in Y}} |y^{\ast}(y)|, it holds. Therefore, the conditions for using the auxiliary theorem are satisfied, thus there exists a linear functional XX x:XCx^{\ast} : X \to \mathbb{ C} that satisfies the following conditions.

x(y)=y(y),yY x^{\ast}(y)=y^{\ast}(y), \quad \forall y \in Y

x(x)p(x),xX \begin{equation} | x^{\ast}(x) | \le p(x),\quad \forall x \in X \end{equation}

The first condition is equivalent to (1)(1). By (3)(3),

x(x)p(x)=yYx |x^{\ast}(x)| \le p(x) =\|y^{\ast}\|_{Y^{\ast}} \|x\|

By the definition of the dual norm,

xX=supx1xXyYx=yY \|x^{\ast}\|_{X^{\ast}} = \sup \limits_{\substack{ \|x\| \le 1 \\ x\in X}}\|y^{\ast}\|_{Y^{\ast}} \|x\| = \|y^{\ast}\|_{Y^{\ast}}

Thus, it satisfies the conditions of (2)(2).

Corollaries

1

If XX is a norm space and x0Xx_{0} \in X, then there exists a linear functional xXx^{\ast} \in X^{\ast} satisfying the following condition.

xX=1,x(x0)=x0 \|x^{\ast}\|_{X^{\ast}} = 1,\quad x^{\ast}(x_{0}) = \| x_{0}\|

Proof

Let’s say Y={λλx0R}Y=\left\{ \lambda | \lambda x_{0} \in \mathbb{ R}\right\}. Then YY becomes a subspace of XX. Now, let’s define a linear functional y:YRy^{\ast} : Y \to \mathbb{R} of YY as follows.

y(y)=y(λx0):=λx0,y=λx0Y y^{\ast}(y)=y^{\ast} (\lambda x_{0}):=\lambda \|x_{0}\|,\quad y=\lambda x_{0}\in Y

It is easy to verify that yy^{\ast} is indeed linear, so we omit this. By the definition of yy^{\ast},

y(y)=λx0=λx0=y | y^{\ast}(y) |=\lambda\|x_{0} \|=\|\lambda x_{0}\|=\| y\|

By the definition of dual norm, since yY=supy1yYy(y)\| y^{\ast}\|_{Y^{\ast}}=\sup \limits_{\substack{ \|y\| \le 1 \\ y\in Y}} |y^{\ast}(y)|,

yY=1 \begin{equation} \|y^{\ast}\|_{Y^{\ast}} = 1 \end{equation} Additionally,

y(x0)=x0(5) y^{\ast}(x_{0})=\|x_{0}\| \tag{5}

By the Hahn-Banach extension theorem, given yy^{\ast}, there exists a linear functional xx^{\ast} of XX such that xX=1=yY\|x^{\ast}\|_{X^{\ast}} = 1 = \|y^{\ast}\|_{Y^{\ast}} and satisfies x(y)=y(y),yYx^{\ast}(y)=y^{\ast}(y),\forall y \in Y. Then by (4)(4) and (5)(5),

xX=yY=1 \|x^{\ast}\|_{X^{\ast}} = \|y^{\ast}\|_{Y^{\ast}} = 1

x(x0)=y(x0)=x0 x^{\ast}(x_{0})=y^{\ast}(x_{0})=\| x_{0}\|

2

Let’s say XX is a C\mathbb{C}-vector space and both YSY \subset S are subspaces of XX. If sSs \in S equals d(s,Y)=δ>0d (s, Y) = \delta > 0, then there exists a linear functional xXx^{\ast} \in X^{\ast} satisfying the following.

xX1 \left\| x^{\ast} \right\|_{X^{\ast}} \le 1

y(s)= y(s)=δ,s(SY)x(y)= y(y)=0,yY \begin{align*} y^{\ast} (s) =&\ y^{\ast} (s) = \delta, \quad s \in (S \setminus Y) \\ x^{\ast} (y) =&\ y^{\ast} (y) = 0, \quad y \in Y \end{align*}


d(s,Y)d \left( s, Y \right) represents the shortest distance between the point ss and the set YY, namely d(s,Y):=infyYsyd (s,Y) := \inf \limits_{y \in Y} \left\| s-y \right\|.

Proof2

If we say,

S:=Y+Cs={y+λs:yY,λC} S := Y + \mathbb{C} s = \left\{ y + \lambda s : y \in Y , \lambda \in \mathbb{C} \right\}

then SXS \subset X. Defining the function y:SCy^{\ast} : S \to \mathbb{C} as

y(y+λs):=λδ y^{\ast} \left( y + \lambda s \right) := \lambda \delta

naturally grants yy^{\ast} linearity. Now, to confirm that yy^{\ast} is a function, let’s assume y1+λ1s=y2+λ2sy_{1} + \lambda_{1} s = y_{2} + \lambda_{2} s and suppose λ1λ2\lambda_{1} \ne \lambda_{2}, then since y1y2=(λ2λ2)sy_{1} - y_{2} = \left( \lambda_{2} - \lambda_{2} \right) s, it leads to s=1λ2λ1(y1y2)\displaystyle s = {{ 1 } \over { \lambda_{2} - \lambda_{1} }} \left( y_{1} - y_{2} \right), and since YY is a vector space, it must be closed under addition, thus it must be sYs \in Y. However, this contradicts d(s,Y)>0d (s, Y) > 0, therefore it must be λ1=λ2\lambda_{1} = \lambda_{2},

y(y1+λ1s)=λ1δ=λ2δ=y(y2+λ1s) y^{\ast} \left( y_{1} + \lambda_{1} s \right) = \lambda_{1} \delta = \lambda_{2} \delta = y^{\ast} \left( y_{2} + \lambda_{1} s \right)

thus, yy^{\ast} is well-defined as a function. For all y+λsSy + \lambda s \in S,

y(y+λs)= λδ= λd(s,Y)= λinfyYsy= sλyy+λs \begin{align*} \left| y^{\ast} (y + \lambda s) \right| =&\ \left| \lambda \delta \right| \\ =&\ \left| \lambda \right| d (s,Y) \\ =&\ \left| \lambda \right| \inf_{y \in Y} \left\| s-y \right\| \\ =&\ \left\| s- \lambda y \right\| \\ \le& \left\| y + \lambda s \right\| \end{align*} therefore, yy^{\ast} is bounded, and especially y1\left\| y^{\ast} \right\| \le 1 . Since y:SCy^{\ast} : S \to \mathbb{C} is a bounded linear function, and by the Hahn-Banach theorem, for all sSs \in S there exists a linear functional xXx^{\ast} \in X^{\ast} that satisfies x(s)=y(s)x^{\ast}(s) = y^{\ast}(s). Meanwhile, by substituting λ=0\lambda = 0 in the definition of yy^{\ast}, since y(y+0s)=0y^{\ast} (y + 0 s) = 0 , for all yYy \in Y,

y(y)=x(y)=0 y^{\ast} (y ) = x^{\ast}(y) = 0

Additionally, since yy^{\ast} is linear,

y(s)=y(y)+1y(s)=y(y+1s)=1δ y^{\ast} (s) = y^{\ast} (y) + 1 y^{\ast} (s)= y^{\ast} (y + 1s) = 1 \delta

In other words, for s(SY)s \in (S \setminus Y),

y(s)=x(s)=δ y^{\ast} (s) = x^{\ast}(s) = \delta

Appendix

Appendix1

Let’s say x1,x2Xx_{1},x_{2} \in X and λC\lambda \in \mathbb{C}. Then,

p(x1+x2)= yYx1+x2yY(x1+x2)= yYx1+yYx2= p(x1)+p(x2) \begin{align*} p(x_{1} + x_{2}) =&\ \|y^{\ast}\|_{Y^{\ast}} \|x_{1} + x_{2} \| \\ \le & \|y^{\ast}\|_{Y^{\ast}} \big(\| x_{1}\| +\|x_{2}\| \big) \\ =&\ \|y^{\ast}\|_{Y^{\ast}} \|x_{1}\| + \|y^{\ast}\|_{Y^{\ast}} \|x_{2}\| \\ =&\ p(x_{1})+p(x_{2}) \end{align*}

p(λx1)= yYλx1= λyYx1= λp(x1) \begin{align*} p(\lambda x_{1}) =&\ \|y^{\ast}\|_{Y^{\ast}} \|\lambda x_{1} \| \\ =&\ |\lambda | \|y^{\ast}\|_{Y^{\ast}} \|x_{1}\| \\ =&\ | \lambda| p(x_{1}) \end{align*}

thus, pp is quasi-linear.

Appendix2

Since XX is a vector space, a scalar multiplied by an element of XX is also an element of XX. Therefore, YY becomes a subset of XX. To show that the subset YY is a subspace, it must be shown to be closed under addition and scalar multiplication. Let’s say y1=λ1x0Yy_{1}=\lambda_{1}x_{0} \in Y, y2=λ2x0Y y_{2}=\lambda_2x_{0} \in Y, and λ1,λ2,kR\lambda_{1}, \lambda_2, k \in \mathbb{R}; and λ1+λ2=λ3R\lambda_{1}+\lambda_2=\lambda_{3}\in \mathbb{R}, kλ1=λ4Rk\lambda_{1}=\lambda_{4}\in \mathbb{ R}. Then,

y1+y2=λ1x0+λ2x0=λ3x0Y y_{1}+y_{2}=\lambda_{1} x_{0} + \lambda_2 x_{0}=\lambda_{3}x_{0}\in Y

ky1=k(λ1x0)=(kλ1)x0=λ4x0Y ky_{1}=k(\lambda_{1}x_{0})=(k \lambda_{1})x_{0}=\lambda_{4} x_{0} \in Y

Therefore, YY is a subspace of XX.


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p6 ↩︎

  2. http://mathonline.wikidot.com/corollaries-to-the-hahn-banach-theorem ↩︎