logo

Hopf-Lax Formula 📂Partial Differential Equations

Hopf-Lax Formula

Buildup1

Let’s consider the initial value problem of the Hamilton-Jacobi equation that depends only on HH as DuDu for the Hamilton-Jacobi equation.

{ut+H(Du)=0in Rn×(0,)u=gon Rn×{t=0} \begin{equation} \left\{ \begin{aligned} u_{t} + H(Du)&=0 && \text{in } \mathbb{R}^n \times (0,\infty) \\ u&=g && \text{on } \mathbb{R}^n \times \left\{ t=0 \right\} \end{aligned} \right. \label{eq1} \end{equation}

Generally, the Hamiltonian depends on the spatial variables as in the form of H(Du,x)H(Du, x), but let’s say here it is not affected by xx. Also, let’s assume the following for the Hamiltonian HCH\in C^\infty.

{H is convexlimpH(p)p= \begin{cases} H \mathrm{\ is\ convex} \\ \lim \limits_{|p|\to \infty} \dfrac{H(p)}{|p|}=\infty \end{cases}

And if we say L=HL=H^{\ast}, the Lagrangian LL also satisfies the same characteristics. Lastly, let’s assume the initial value g:RnRg : \mathbb{R}^n \to \mathbb{R} is Lipschitz continuous. That is,

Lip(g):=supx,yRnxyg(x)g(y)xy< \mathrm{Lip}(g):=\sup \limits_{x,y\in \mathbb{R}^n \\ x \ne y} \dfrac{ |g(x)-g(y)| }{|x-y|} < \infty

Furthermore, the characteristic equation of the given Hamilton-Jacobi equation (eq1)\eqref{eq1} is as follows.

p˙(s)=DxH(p(s),x(s))z˙(s)=DpH(p(s), x(s))p(s)H(p(s),x(s))x˙(s)=DpH(p(s),x(s)) \begin{align*} \dot{\mathbf{p}}(s) &= -D_{x}H \big( \mathbf{p}(s), \mathbf{x}(s) \big) \\ \dot{z}(s) &= D_{p} H\big( \mathbf{p}(s),\ \mathbf{x}(s)\big)\cdot \mathbf{p}(s) -H\big( \mathbf{p}(s), \mathbf{x}(s)\big) \\ \dot{\mathbf{x}}(s) &= D_{p}H\big( \mathbf{p}(s), \mathbf{x}(s) \big) \end{align*}

Here, since HH is assumed to be independent of xx, it can be rewritten as follows.

p˙=0z˙=DH(p)pH(p)x˙=DH(p) \begin{align*} \dot{\mathbf{p}} &= 0 \\ \dot{z} &= D H( \mathbf{p} )\cdot \mathbf{p} -H ( \mathbf{p} ) \\ \dot{\mathbf{x}} &= DH ( \mathbf{p}) \end{align*}

At this time, it is t(s)=s,p(s)=Du(x(s),s),z(s)=u(x(s),s)t(s)=s, p(s)=Du(x(s), s), z(s)=u(x(s), s). Since there is no need to distinguish between the differentiation with respect to pp and xx, the subscript of DD was omitted. Since the Euler-Lagrange equation holds for fixed start and end points, if there exists a solution to the given Hamilton-Jacobi equation (eq1)\eqref{eq1}, then it is a local in time solution as follows.

u=u(x,t)C2(Rn×[0,T]) u= u(x,t) \in C^2\big( \mathbb{R}^n \times [0,T]\big)

In the above characteristic equation, the first and third equations are Hamilton’s equations that satisfy the Euler-Lagrange equation from the minimization problem of action defined by Lagrangian L=HL=H*.

If HH and LL are differentiable at pp and vRnv\in \mathbb{R}^n, then all the following contents are equivalent.

{pv=L(v)+H(p)p=DL(v)v=DH(p) \begin{cases} p\cdot v=L(v) + H(p) \\ p=DL(v) \\ v=DH(p) \end{cases}

At this time, it is defined as p=DvL(v)p=D_{v}L(v), so using the above lemma, we obtain the following.

z˙(s)=DH(p)pH(p)=vpH(p)=L(v)+H(p)H(p)=L(v)=L(x˙(s)) \begin{align*} \dot{z}(s) &= DH(\mathbf{p})\cdot \mathbf{p}-H(\mathbf{p}) \\ &= \mathbf{v} \cdot \mathbf{p}-H(\mathbf{p}) \\ &= L(\mathbf{v})+H(\mathbf{p})-H(\mathbf{p}) \\ &= L(\mathbf{v}) = L\big(\dot{\mathbf{x}}(s)\big) \end{align*}

Therefore, if we find z(t)z(t), it is as follows.

z(t)=0tz˙(s)dx+z(0)=0tL(x˙(s))+u(x(0), 0)=0tL(x˙(s))ds+g(x(0)) \begin{align*} z(t) &= \int_{0}^t \dot{z}(s)dx +z(0) \\ &= \int_{0}^tL \big( \dot{\mathbf{x}}(s) \big) + u\big( \mathbf{x}(0),\ 0\big) \\ &= \int_{0}^t L\big( \dot{\mathbf{x}}(s)\big) ds +g\big(\mathbf{x}(0) \big) \end{align*}

However, at this time, since it was z(t)=u(x(t),t)z(t)=u(x(t), t) in the above condition, we obtain the following.

u(x,t)=0tL(x˙(s))ds+g(x(0))(0t<T) u(x,t)=\int_{0}^t L\big( \dot{\mathbf{x}}(s)\big) ds +g\big(\mathbf{x}(0) \big) \quad (0 \le t <T)

This is a local in time smooth solution, so the question remains whether a global in time weak solution can be obtained. Returning to the minimization problem of action, the difference from when the Euler-Lagrange equation was derived is that only the endpoint is fixed.

Let’s say a fixed xRn,t>0x \in \mathbb{R}^n, t>0 is given. And let’s say the admissible class A\mathcal{A} is as follows.

A={wC1([0,t];Rn) : w(t)=x} \mathcal{A}=\left\{ \mathbf{w}\in C^1\big( [0,t];\mathbb{R}^n \big)\ :\ \mathbf{w}(t)=x \right\}

And let’s consider the minimization problem of the following action.

w()A0tL(w˙(s))ds+g(w(0)) \mathbf{w}(\cdot) \in \mathcal{A} \mapsto \int_{0}^t L\big( \dot{\mathbf{w}}(s)\big) ds + g(\mathbf{w}(0))

If a minimizer x()\mathbf{x}(\cdot) exists, then it is p(s):=DL(x˙(s))\mathbf{p}(s):=DL(\dot{\mathbf{x}}(s)), satisfies the Euler-Lagrange equation, and therefore also satisfies the Hamilton equation. Thus, as in the case of the local in time solution obtained earlier, the solution will be given as follows.

u(x,t)=0tL(x˙(s))ds+g(x(0)) u(x,t)=\int_{0}^tL\big( \dot{\mathbf{x}}(s)\big)ds +g \big( \mathbf{x}(0) \big)

Based on the above content, if a global in time weak solution exists, it can be defined as follows.

u(x,t):=infwA{0tL(w˙(s))ds+g(w(0))} \begin{equation} u(x,t):=\inf \limits_{\mathbf{w} \in \mathcal{A}} \left\{ \int_{0}^t L\big( \dot{\mathbf{w}}(s) \big)ds + g\big( \mathbf{w}(0) \big) \right\} \label{eq2} \end{equation}

Theorem

Let’s say xRnx \in \mathbb{R}^n and t>0t>0. Then, the solution to the minimization problem of (eq2)\eqref{eq2} is given as follows.

u(x,t)=minyRn{tL(xyt)+g(y)} u(x,t) = \min \limits_{y \in \mathbb{R}^n} \left\{ tL\left( \dfrac{x-y}{t} \right) +g(y) \right\}

This is called the Hopf-Lax formula.

Proof

First, we show that it holds for inf\inf, and then actually show that it becomes min\min in order.


  • Step 1.

    There exists an arbitrary fixed yRn,tRy \in \mathbb{R}^n, t\in \mathbb{R}. And let’s define w\mathbf{w} as follows.

    w(s):=y+st(xy)(0st) \mathbf{w}(s) :=y+\frac{s}{t}(x-y) \quad (0 \le s \le t)

    Then w(0)=y\mathbf{w}(0)=y and w(t)=x\mathbf{w}(t)=x. Then w\mathbf{w} is an element of the admissible class A\mathcal{A}.

    A={w()  w(0)=y, w(t)=x} \mathcal{A}= \left\{ \mathbf{w}(\cdot) \ \big| \ \mathbf{w}(0)=y,\ \mathbf{w}(t)=x\right\}

    Then, by the definition of ~, the following inequality holds.

    u(x,t)0tL(xyt)ds+g(y)=tL(xyt)+g(y) \begin{align*} u(x,t) & \le& \int_{0}^t L \left( \frac{x-y}{t}\right)ds + g(y) \\ &= tL\left( \frac{x-y}{t}\right)+g(y) \end{align*}

    Since this inequality holds for all yRny \in \mathbb{R}^n, we obtain the following.

    u(x,t)infyRn(tL(xyt)+g(y)) u(x,t) \le \inf \limits_{y \in \mathbb{R}^n} \left(t L\left(\frac{x-y}{t} \right) +g(y)\right)

  • Step 2.

    Let’s say w()A\mathbf{w}(\cdot) \in \mathcal{A}. Then w()C1([0;t];Rn)\mathbf{w}(\cdot) \in C^1([0;t];\mathbb{R}^n) and w(t)=x\mathbf{w}(t)=x.

    Jensen’s Inequality

    Suppose the function ff is convex. Then, the following formula holds. f( ⁣ ⁣ ⁣ ⁣ ⁣ ⁣Uudx) ⁣ ⁣ ⁣ ⁣ ⁣ ⁣Uf(u)dx f \left( -\!\!\!\!\!\! \int_{U} u dx \right) \le -\!\!\!\!\!\! \int_{U} f(u) dx

    Then, by the above lemma, the following holds.

    L(1t0tw˙(s)dx)1t0tL(w(s)˙)ds L \left( \frac{1}{t}\int_{0}^t \dot{\mathbf{w}}(s) dx\right) \le \dfrac{1}{t}\int_{0}^t L \big( \dot{\mathbf{w}(s)} \big)ds

    And let’s say the starting point is yy, w(0)=y\mathbf{w}(0)=y. Then, the above inequality is as follows.

    $$ \begin{align*} && L\left( \dfrac{1}{t} \big( \mathbf{w}(t)-\mathbf{w}(0) \big) \right) &\le \dfrac{1}{t}\int_{0}^tL \big( \dot{\mathbf{w}}(s) \big)ds
    \\ \implies&& L\left( \dfrac{x-y}{t} \right) &\le \dfrac{1}{t}\int_{0}^tL \big( \dot{\mathbf{w}}(s) \big)ds \end{align*} $$

    Multiply both sides by tt and add g(y)g(y) to get the following.

    tL(xyt)+g(y)0tL(w˙(s))ds+g(y) tL\left( \dfrac{x-y}{t} \right) + g(y) \le \int_{0}^tL \big( \dot{\mathbf{w}}(s) \big)ds + g(y)

    Since the right-hand side’s inf\inf is u(x,t)u(x,t), it is as follows.

    tL(xyt)+g(y)u(x,t) tL\left( \dfrac{x-y}{t} \right) + g(y) \le u(x,t)

    Finally, taking infyRn\inf \limits_{y\in \mathbb{R}^n} on both sides, we obtain the following.

    infyRn(tL(xyt)+g(y))u(x,t) \inf \limits_{y \in \mathbb{R}^n} \left( tL\left( \dfrac{x-y}{t} \right) + g(y) \right) \le u(x,t)

Therefore, by Step 1. and Step 2., the following holds.

u(x,t)=infyRn(tL(xyt)+g(y)) \begin{equation} u(x,t) = \inf \limits_{y \in \mathbb{R}^n} \left( tL\left( \dfrac{x-y}{t} \right) + g(y) \right) \label{eq3} \end{equation}

  • Step 3.

    Let’s say {yk}k=1\left\{y_{k} \right\}_{k=1}^\infty is a minimizing sequence for (eq3)\eqref{eq3}. Then, the following holds.

    tL(xykt)+g(yk)u(x,t)[,)as k \begin{equation} tL\left( \dfrac{x-y_{k}}{t} \right) + g(y_{k}) \to u(x,t)\in [-\infty, \infty) \quad \mathrm{as}\ k\to \infty \label{eq4} \end{equation}

    First, assume {yk}\left\{y_{k} \right\} is not bounded. We will show this assumption leads to a contradiction, proving that {yk}\left\{ y_{k} \right\} is bounded. By assumption, yk|y_{k}| \to \infty and yk=0y_{k}=0, kk are at most finite. Therefore, let’s consider a subsequence that only satisfies yk0y_{k}\ne 0 again as {yk}\left\{ y_{k} \right\}. The following holds.

    xykt \left| \dfrac{x-y_{k}}{t} \right| \to \infty

    Then, by the properties of the Lagrangian LL, the following holds.

    ak:=L(xykt)xykt a_{k}:= \dfrac{L\left( \dfrac{x-y_{k}}{t}\right)}{\left| \dfrac{x-y_{k}}{t}\right|} \to \infty

    Therefore, L(xylt)L\left( \dfrac{x-y_{l}}{t}\right) \to \infty and multiplying by a constant yields the same result.

    tL(xykt) \begin{equation} tL\left( \dfrac{x-y_{k}}{t}\right) \to \infty \label{eq5} \end{equation}

    Rewriting the Lipschitz condition of gg is as follows.

    g(x)g(yk)xykLip(g)=C kN \dfrac{|g(x)-g(y_{k})|}{|x-y_{k}|} \le \mathrm{Lip}(g)=C \quad \forall \ k \in \mathbb{N}

    Therefore, we obtain the following.

    ▶eq32

Adding (eq5)\eqref{eq5} to both sides gives the following.

tL(xykt)+g(x)g(yk)Cxyk+tL(xykt)for large k tL\left( \dfrac{x-y_{k}}{t}\right)+ g(x) -g(y_{k}) \le C|x-y_{k}|+ tL\left( \dfrac{x-y_{k}}{t}\right) \quad \mathrm{for\ large}\ k

Appropriately rearranging the above formula yields the following.

tL(xykt)Cxyk+g(x)tL(xykt)+g(yk) tL\left( \dfrac{x-y_{k}}{t}\right)-C|x-y_{k}| + g(x) \le tL\left( \dfrac{x-y_{k}}{t}\right) + g(y_{k})

Rewritten, it is as follows.

akxykCxyk+g(x)=xyk(akC)+g(x)tL(xykt)+g(yk) a_{k}|x-y_{k}| -C|x-y_{k}| + g(x) =|x-y_{k}|(a_{k}-C)+g(x) \le tL\left( \dfrac{x-y_{k}}{t}\right) + g(y_{k})

Since aka_{k}\to \infty and xyk|x-y_{k}| \to \infty, the left side diverges to \infty and the right side also diverges. Therefore, by the definition of u(x,t)u(x,t), u(x,t)u(x,t)\to \infty is true. This is a contradiction to (eq4)\eqref{eq4}, so {yk}\left\{ y_{k} \right\} is bounded.

Since {yk}\left\{ y_{k} \right\} is bounded, let’s assume yky0y_{k} \to y_{0}. Then, the following holds.

tL(xykt)+g(yk)tL(xy0t)+g(y0)=minyRn(tL(xyt)+g(y)) tL \left( \dfrac{x-y_{k}}{t} \right)+g(y_{k}) \to tL \left( \dfrac{x-y_{0}}{t}\right)+g(y_{0}) =\min\limits_{y \in \mathbb{R}^n}\left( tL \left( \dfrac{x-y}{t}\right)+g(y) \right)

Then, by (eq4)\eqref{eq4}, the following holds.

tL(xykt)+g(yk)u(x,t)[,)as k tL\left( \dfrac{x-y_{k}}{t} \right) + g(y_{k}) \to u(x,t)\in [-\infty, \infty) \quad \mathrm{as}\ k\to \infty

Therefore, we obtain the following.

u(x,t)=minyRn(tL(xyt)+g(y)) u(x,t) = \min \limits_{y \in \mathbb{R}^n} \left( tL\left( \dfrac{x-y}{t} \right) +g(y) \right)


  1. Lawrence C. Evans, Partial Differential Equations (2nd Edition, 2010), p122-124 ↩︎