logo

Discrete Fourier Transform 📂Fourier Analysis

Discrete Fourier Transform

Buildup1

Let’s assume that ff is some physical signal measured at specific intervals. Considering realistic conditions, there will be a moment when the measurement of the signal starts, t=0t=0, and a moment when the measurement ends, t=Ωt=\Omega. Thus, it can be assumed that the function value of ff is 00 everywhere except for [0,Ω][0, \Omega].

Sampling Theorem

Let’s assume that f^L2\hat{f} \in L^{2} and f(t)=0 for t[0,2Ω]f (t) = 0\ \text{for } t \in [0, 2\Omega]. Then, f^(ω)\hat{f}(\omega) is determined by the values at mπ/Ω(m=0,±1,±2,)m\pi / \Omega (m=0, \pm 1, \pm 2, \dots). That is, the following holds:

f^(ω)=m=f^(mπΩ)sin(Ωωmπ)Ωωmπ \hat{f}(\omega) = \sum \limits_{m = -\infty}^{\infty} \hat{f} \left( \dfrac{m\pi}{\Omega}\right) \dfrac{\sin (\Omega \omega -m\pi )}{\Omega \omega - m\pi}

Therefore, since the value of ff exists only in the interval [0,Ω][0,\Omega], which has a length of Ω\Omega, according to the sampling theorem, the value of f^\hat{f} is determined by the discrete intervals of f^(πmΩ/2)=f^(2πmΩ)\hat{f} \left( \dfrac{\pi m}{\Omega/2} \right) = \hat{f} \left( \dfrac{2\pi m}{\Omega} \right). By calculating this value, according to the definition of Fourier Transform, it is as follows.

f^(2πmΩ)=f(x)ei(2πm/Ω)xdx=0Ωf(x)ei(2πm/Ω)xdx \hat{f} \left( \dfrac{2\pi m}{\Omega} \right) = \int_{-\infty}^{\infty} f(x)e^{-i(2\pi m/ \Omega)x}dx = \int_{0}^{\Omega} f(x)e^{-i(2\pi m/ \Omega)x}dx

Now, let’s think about dividing [0,Ω][0, \Omega] into NN intervals. Then, the left endpoints of the divided intervals are as follows.

0,1ΩN,2ΩN,,nΩN,,(N1)ΩN 0, \dfrac{1\Omega}{N}, \dfrac{2\Omega}{N}, \dots, \dfrac{n\Omega}{N}, \dots, \dfrac{(N-1)\Omega}{N}

Considering the method of trapezoids, multiplying the function value at the points above by the length of each interval ΩN\dfrac{\Omega}{N} and summing it all together, it can be understood that it will be similar to the integral value.

f^(2πmΩ)=0Ωf(x)ei(2πm/Ω)xdxn=0N1ei2πmn/Nf(nΩN)ΩN \hat{f} \left( \dfrac{2\pi m}{\Omega} \right) = \int_{0}^{\Omega} f(x)e^{-i(2\pi m/ \Omega)x}dx \approx \sum_{n=0}^{N-1}e^{-i2\pi mn /N}f \left( \dfrac{n\Omega}{N} \right)\dfrac{\Omega}{N}

If we say that an=f(nΩ/N)a_{n} = f(n\Omega/N),

NΩf^(2πmΩ)n=0N1ei2πmn/Nan \dfrac{N}{\Omega}\hat{f} \left( \dfrac{2\pi m}{\Omega} \right) \approx \sum_{n=0}^{N-1}e^{-i2\pi mn /N} a_{n}

Now, if we say that a^m=n=0N1ei2πmn/Nan\hat{a}_{m}=\sum_{n=0}^{N-1}e^{-i2\pi mn /N} a_{n},

NΩf^(2πmΩ)a^m \dfrac{N}{\Omega}\hat{f} \left( \dfrac{2\pi m}{\Omega} \right) \approx \hat{a}_{m}

Here, since e2πin=1e^{-2\pi i n}=1,

e2πi(m+N)n/N=e2πimn/Ne2πin=e2πimn/N e^{-2\pi i (m+N)n / N}=e^{-2\pi imn / N}e^{-2\pi in}=e^{-2\pi imn / N}

It holds, and a^m\hat{a}_{m} has a period of NN.

a^m+N=a^m \hat{a}_{m+N}=\hat{a}_{m}

Now, naturally, we can think about mapping from a NN-dimensional vector a=(a0,a1,,aN1)CN\mathbf{a} = (a_{0}, a_{1}, \dots, a_{N-1}) \in \mathbb{C}^{N} to a NN-dimensional vector a^=(a^0,a^1,,a^N1)CN\hat{\mathbf{a}} = (\hat{a}_{0}, \hat{a}_{1}, \dots, \hat{a}_{N-1}) \in \mathbb{C}^{N}. Let’s define the NN-point discrete Fourier transform as follows.

Definition

The linear transformation FN:CNCN\mathcal{F}_{N} : \mathbb{C}^{N} \to \mathbb{C}^{N} defined as follows is called the discrete Fourier transform.

FN(a)=a^,a^m=n=0N1ei2πmn/Nan(0m<N) \mathcal{F}_{N}(\mathbf{a}) = \hat{\mathbf{a}},\quad \hat{a}_{m}=\sum_{n=0}^{N-1}e^{-i2\pi mn /N} a_{n}\quad (0\le m < N)

In this case, a=(a0,a1,,aN1)\mathbf{a} = (a_{0}, a_{1}, \dots, a_{N-1}) and a^=(a^0,a^1,,a^N1)CN\hat{\mathbf{a}} = (\hat{a}_{0}, \hat{a}_{1}, \dots, \hat{a}_{N-1}) \in \mathbb{C}^{N}.

Explanation

In signal processing, which often deals with discrete signals, time domain signals are commonly denoted by xx, and frequency domain signals by XX.

x[n]=xn=k=0N1X[k] x[n] = x_{n} = \sum \limits_{k=0}^{N-1}X[k]

See Also


  1. Gerald B. Folland, Fourier Analysis and Its Applications (1992), p249-251 ↩︎