logo

Convergence of Fourier Series at Discontinuities 📂Fourier Analysis

Convergence of Fourier Series at Discontinuities

Theorem1

Let’s say the function f(t)f(t), defined in the interval [L, L)[-L,\ L), is piecewise continuous. Denoting the points of discontinuity as ti (i=1, m)t_{i}\ (i=1,\ \cdots m ) and assuming at each point of discontinuity, there exist left-hand derivative f(a)f(a-) and right-hand derivative f(a+)f(a+). Then, the Fourier series of f(t)f(t) converges to the midpoint of the left-hand and right-hand limits at the point of discontinuity tit_{i}.

a02+n=1(ancosnπtiL+bnsinnπtiL)=f(ti+)+f(ti)2 \dfrac{a_{0}}{2}+\sum \limits_{n=1}^{\infty}\left( a_{n} \cos \dfrac{n \pi t_{i} }{L} +b_{n}\sin\dfrac{n\pi t_{i}}{L} \right) = \dfrac{f(t_{i}+)+f(t_{i}-)}{2}


If ff is Riemann integrable, its Fourier series converges to ff at the continuous point tt. At points of discontinuity, it can be understood from the above theorem that it converges to the midpoint of the left and right derivatives.

Proof

Consider an arbitrary point of discontinuity ti=tt_{i}=t.

The relationship between the Fourier series and the Dirichlet kernel

SNf(t)=1LLLf(x)DN(π(xt)L)dx S^{f}_{N}(t)=\dfrac{1}{L}\int_{-L}^{L}f(x)D_{N}\left(\dfrac{\pi (x-t)}{L}\right)dx

Through the above relation, the following equation is obtained.

limNSN(t)=limN1LLLf(x)DN(π(xt)L)dx=limN1LLtLtf(λ+t)DN(πλL)dλ=limN1LLLf(λ+t)DN(πλL)dλ=limN1LL0f(λ+t)DN(πλL)dλ+limN1L0Lf(λ+t)DN(πλL)dλ \begin{align} & \lim_{N \rightarrow \infty} S_{N} (t) \nonumber \\ =& \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} f(x)D_{N}\left( \dfrac{\pi (x-t)}{L} \right) dx \nonumber \\ =& \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L-t}^{L-t} f(\lambda + t)D_{N}\left( \dfrac{\pi \lambda }{L} \right) d\lambda \nonumber \\ =& \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} f(\lambda + t)D_{N}\left( \dfrac{\pi \lambda }{L} \right) d\lambda \nonumber \\ =& \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{0} f(\lambda + t)D_{N}\left(\dfrac{\pi \lambda }{L}\right) d\lambda +\lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{0}^{L} f(\lambda +t)D_{N}\left( \dfrac{\pi \lambda }{L}\right) d\lambda \end{align}

The second equality holds by substituting with xt=λx-t=\lambda. The third equality holds because it only matters that the integration is over a period (2L)(2L).

Integration of the Dirichlet kernel

1LLLDN(π(xt)L)dx=1 \dfrac{1}{L}\int_{-L}^{L}D_{N}\left( \dfrac{\pi (x-t)}{L} \right)dx = 1

Since the Dirichlet kernel is an even function, the following equation is derived from the above.

1L0LDN(πλL)dλ=1LL0DN(πλL)dλ=12 \dfrac{1}{L} \int_{0}^{L} D_{N} \left( \dfrac{\pi \lambda}{L} \right) d\lambda=\dfrac{1}{L} \int_{-L}^{0} D_{N} \left( \dfrac{\pi \lambda}{L} \right) d\lambda=\dfrac{1}{2}

Therefore, the following equation holds.

12f(t+)=f(t+)1L0LDN(πλL)dλ=1L0Lf(t+)DN(πλL)dλ12f(t)=f(t)1LL0DN(πλL)dλ=1LL0f(t)DN(πλL)dλ \begin{equation} \begin{aligned} \dfrac{1}{2}f(t+) &= f(t+)\dfrac{1}{L} \int_{0}^{L} D_{N} \left( \dfrac{\pi \lambda}{L} \right) d\lambda=\dfrac{1}{L} \int_{0}^{L} f(t+)D_{N} \left( \dfrac{\pi \lambda}{L} \right) d\lambda \\ \dfrac{1}{2}f(t-) &= f(t-)\dfrac{1}{L} \int_{-L}^{0} D_{N} \left( \dfrac{\pi \lambda}{L} \right) d\lambda=\dfrac{1}{L} \int_{-L}^{0} f(t-)D_{N} \left( \dfrac{\pi \lambda }{L} \right) d\lambda \end{aligned} \end{equation}

Aligning with the integration range of the two terms of (1)(1) and subtracting the two equations of (2)(2) respectively, we get the following.

limN1L0Lf(λ+t)DN(πλL)dλ12f(t+)=limN1L0L(f(λ+t)f(t+))DN(πλL)dλ=limN1L0L(f(λ+t)f(t+)))sin(N+12)πλL2sinπλ2Ldλ=limN1L0Lg+(λ)sin[(N+12)πλL]dλ \begin{align*} & \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{0}^{L} f(\lambda + t)D_{N}\left( \dfrac{\pi \lambda }{L}\right) d\lambda - \dfrac{1}{2}f(t+) \\ =& \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{0}^{L}\Big( f(\lambda + t) -f(t+) \Big) D_{N}\left(\dfrac{\pi \lambda }{L}\right) d\lambda \\ =& \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{0}^{L}\Big( f(\lambda + t) -f(t+)) \Big)\dfrac{\sin\left(N+\dfrac{1}{2}\right) \dfrac{\pi \lambda}{L}}{2\sin \dfrac{\pi \lambda}{2L}} d\lambda \\ =& \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{0}^{L}g_+(\lambda) \sin\left[ \left(N+\dfrac{1}{2}\right) \dfrac{\pi \lambda}{L}\right] d\lambda \end{align*}

Where, g+(λ)=f(λ+t)f(t+)λλ2sinπλ2Lg_+(\lambda) = \dfrac{ f(\lambda + t) -f(t+) }{\lambda}\dfrac{\lambda}{2\sin \dfrac{\pi \lambda}{2L}} holds. The second equality is due to the equation below.

The relationship between the Fourier series and the Dirichlet kernel

SNf(t)=1LLLf(x)Dn(π(xt)L)dx S_{N}^{f} (t)=\dfrac{1}{L}\int_{-L}^{L}f(x)D_{n}\left(\dfrac{\pi (x-t)}{L}\right)dx

Calculating in the same way, we get the following.

limN1LL0f(λ+t)DN(πλL)dλ12f(t)=limN1LL0g(λ)sin[(N+12)πλL]dλ \begin{align*} & \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{0} f(\lambda + t)D_{N}\left( \dfrac{\pi \lambda }{L}\right) d\lambda - \dfrac{1}{2}f(t-) \\ =& \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{0}g_-(\lambda) \sin\left[ \left(N+\dfrac{1}{2}\right) \dfrac{\pi \lambda}{L}\right] d\lambda \end{align*}

Here, g(λ)=f(λ+t)f(t)λλ2sinπλ2Lg_-(\lambda) = \dfrac{ f(\lambda + t) -f(t-) }{\lambda}\dfrac{\lambda}{2\sin \dfrac{\pi \lambda}{2L}} holds. Now we aim to show that g±(λ)g_\pm(\lambda) is piecewise continuous. Due to the properties of the limit of the sine function,

limλ0λ2sinπλ2L=limλ0πλ2Lsinπλ2LLπ=Lπ \lim \limits_{\lambda \rightarrow 0} \dfrac{\lambda}{2\sin \dfrac{\pi \lambda}{2L}} =\lim \limits_{\lambda \rightarrow 0} \dfrac{\dfrac{\pi \lambda}{2L}}{\sin \dfrac{\pi \lambda}{2L}} \dfrac{L}{\pi}=\dfrac{L}{\pi}

there exists M1>0M_{1}>0 satisfying the equation below at any given λ[L, L)\lambda \in [-L,\ L).

λ2sinπλ2LM1< \left| \dfrac{\lambda}{2\sin \dfrac{\pi \lambda}{2L}}\right| \le M_{1} <\infty

It’s certain not to diverge except at 00, and it’s shown not to diverge even at 00. This means it is bounded. That is, there are a finite number of points of discontinuity within the interval, and both left/right limits exist at the points of discontinuity. Hence, it is piecewise continuous within the interval. If continuous, then it is Riemann integrable, and being Riemann integrable, it is bounded, and ff has a right-hand derivative at tt, so there exists M2M_2 satisfying the equation below at any given λ(0, L)\lambda \in (0,\ L).

f(λ+t)f(t+)λM2< \left| \dfrac{f(\lambda+t) -f(t+)}{\lambda} \right| \le M_2 <\infty

Similarly, it is piecewise continuous within the interval. By the two facts above, g+(λ)g_+(\lambda) is piecewise continuous and therefore Riemann integrable at [0, L)[0,\ L). Therefore,

limN1L0Lf(λ+t)DN(πλL)dλ12f(t+)=limN1L0Lg+(λ)sin[(N+12)πλL]dλ= 0 \begin{align*} & \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{0}^{L} f(\lambda + t)D_{N}\left( \dfrac{\pi \lambda }{L}\right) d\lambda - \dfrac{1}{2}f(t+) \\ =& \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{0}^{L}g_+(\lambda) \sin\left[ \left(N+\dfrac{1}{2}\right) \dfrac{\pi \lambda}{L} \right]d\lambda \\ =&\ 0 \end{align*}

As g+(λ)g_+(\lambda) is piecewise continuous within the interval, the second equality holds due to the Riemann-Lebesgue lemma.

Riemann-Lebesgue lemma

If the function f(t)f(t) is piecewise continuous within the interval [L, L)[-L,\ L), the following equation holds:

limnan=limn1LLLf(t)cosnπLtdt=0 \lim \limits_{n \rightarrow \infty} a_{n} = \lim \limits_{n \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} f(t) \cos \dfrac{n \pi}{L}t dt=0

limnbn=limn1LLLf(t)sinnπLtdt=0 \lim \limits_{n \rightarrow \infty} b_{n} = \lim \limits_{n \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{L} f(t) \sin \dfrac{n \pi}{L}t dt=0

Therefore,

limN1L0Lf(λ+t)DN(πλL)dλ=12f(t+) \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{0}^{L} f(\lambda + t)D_{N}\left( \dfrac{\pi \lambda }{L}\right) d\lambda=\dfrac{1}{2}f(t+)

In the same way, the following equation can be obtained.

limN1LL0f(λ+t)DN(πλL)dλ=12f(t) \lim \limits_{N \rightarrow \infty} \dfrac{1}{L} \int_{-L}^{0} f(\lambda + t)D_{N}\left( \dfrac{\pi \lambda }{L}\right) d\lambda=\dfrac{1}{2}f(t-)

Combining the two equations,

limNSN(t)=12(f(t+)+f(t)) \lim \limits_{N \rightarrow \infty} S_{N}(t) = \dfrac{1}{2}\big(f(t+)+f(t-)\big)


  1. Byung Sun Choi, Introduction to Fourier Analysis (2002), p65-67 ↩︎